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Abstract

We study the 3D reconstruction of an isometric surface from point correspondences between a tem-
plate and a single input image. The template shows the surface flat and fronto-parallel. We propose
three new methods. The first two use a convex relaxation of isometry to inextensibility. They are formu-
lated as Second Order Cone Programs (SOCP). The first proposed method is point-wise (it reconstructs
only the input point correspondences) while the second proposed method uses a smooth and continuous
surface model, based on Free-Form Deformations (FFD). The third proposed method uses the ‘true’
nonconvex isometric constraint and the same continuous surface model. It is formulated with Nonlinear
Least-Squares and can thus be solved with the efficient Levenberg-Marquardt minimization method. The
proposed approaches may be combined in a single pipeline whereby one of the convex approximations is
used to initialize the nonconvex method. Our contributions solve two important limitations of current
state of the art: our convex methods are the first ones to handle noise in both the template and image
points, and our nonconvex method is the first one to use ‘true’ isometric constraints. Our experimental
results on simulated and real data show that our convex point-wise method and our nonconvex method
outperform respectively current initialization and refinement methods in 3D reconstructed surface accu-
racy.

Code release. We intend to release our code under the GPL license.

Research highlights:

• A convex SOCP based method with noise in template and image

• The use of a continuous surface model based on an FFD

• A nonconvex, statistically founded, and truly isometric reconstruction method

1 Introduction

Monocular 3D surface reconstruction of deformable objects is a challenging problem which has gained interest
over the past decade. Without additional priors, this is an ill-posed problem since there is an infinite
number of deformable 3D surfaces with exactly the same projection. In this paper, we study monocular
3D reconstruction of deformable but isometric surfaces from a single input image and under two common
assumptions [21, 26, 17]. First, we assume that point correspondences are available between the input
image and a template image; the latter shows the surface flat and fronto-parallel. Second, we assume that
the camera follows the pin-hole model with known intrinsic parameters [13]. This type of reconstruction
algorithms may be used for thin-shell objects which may be physically flattened and which smoothly deform
without stretching. Examples of such objects and deformations are a sheet of paper being gently bent, a flag
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waving in the wind and a piece of cloth on a moving body. However, non physically flattening objects such
as faces, even if they deform quasi-isometrically, cannot be handled by this type of algorithms.

Different types of constraints have been proposed to disambiguate the problem of monocular 3D recon-
struction of deformable surfaces. These constraints can be divided into two main categories: statistical con-
straints and physical constraints. Constraints coming from both categories may of course be combined [1, 7].
Statistical constraints include the very popular low-rank shape model applicable to template-free 3D recon-
struction and leading to nonrigid factorization [4, 1, 3, 7, 15, 27, 28]. This constraint has been used in the
template-based case by a priori learning a typical shape basis [10, 22, 24, 21]. Physical constraints include
temporal and spatial 3D surface priors [12, 19] and isometric deformations [23, 26, 21, 17].

Methods for monocular 3D reconstruction of deformable surfaces can be categorized by type of constraints
but also by type of 3D surface model. The point-wise surface model uses a sparse set of 3D points, each
of which generally associated to a known point correspondence [17]. The mesh-based surface model uses a
set of connected, typically triangular facets [23, 21]. The continuous surface model uses a smooth surface
embedding which maps the template space to 3D [17, 1].

The isometric deformation constraint is widely applicable and stable for 3D reconstruction. For instance,
it approximates well the deformation of materials such as paper and fabric [23, 26, 21, 17]. An isometric
deformation preserves geodesic distances on the 3D surface across time. However, computing geodesics is a
hard problem; it is consequently even harder to constrain their length in a 3D reconstruction algorithm. Two
main ways have been proposed to implement the isometry constraint. The first way is the inextensibility
relaxation that leads to convex inequality constraints on the 3D points’ coordinates. It upper bounds the
Euclidean distance by the template geodesic distance for pairs of 3D points [23, 21, 26, 17]. The second way
is the Euclidean approximation that leads to quartic constraints on the 3D points’ coordinates. It preserves
the Euclidean distance instead of the geodesic distance for pairs of closely spaced 3D points [25].

Current algorithms’ limitations and proposed contributions. This paper proposes three new meth-
ods to improve template-based 3D reconstruction with the isometric deformation constraint. It extends our
conference paper [6].

First, the current literature misses a convex algorithm solving the inextensibility relaxation and handling
noise in both the template and the input image. We show that the maximum depth heuristic [17] with the
inextensibility relaxation can be cast as an SOCP [2]. While previous work use iterative local optimization
and model noise in the template image only [17] or in the input image only [23, 21, 26], our formulation
models noise in both images. Our first implementation of this formulation uses a point-wise surface model;
our second implementation uses a continuous surface model. In the latter case, we propose using an FFD
with a compact B-spline kernel as opposed to the dense TPS kernel [17, 1].

Second, the current literature misses a formulation of the isometric deformation constraint adapted to
nonconvex optimization. We show that using a continuous surface model allows one to gracefully formulate
the isometric deformation constraint as a Nonlinear Least-Squares cost function on the unknown continuous
surface model.

We report extensive experimental results on simulated and real data. They show that our point-wise
convex inextensibility method outperforms current initialization methods in terms of 3D reconstruction ac-
curacy, but that directly including the continuous surface model degrades accuracy. Our nonconvex isometric
method gives the most accurate results of all compared methods by a substantial margin. We give a careful
analysis of these results and draw general conclusions.

Paper organization. We review related work in §2. We present our embedding-based continuous surface
modeling in §3. We give our convex methods using inextensiblity in §4 and our nonconvex method in §5.
We report experimental results in §6 and conclude in §7.

Notation. We write scalars in italics, vectors in bold and matrices in sans-serif fonts. K ∈ R3×3 contains
the camera’s intrinsic parameters (the camera lies at the world coordinate frame’s origin) and pT

k is the
kth row of matrix K. The n point correspondences are written (qi,q

′
i) with i ∈ {1, . . . , n} the point index,

qi ∈ R2 is the template point and q′i ∈ R2 the input image point. The homogeneous coordinates of point

qi are written q̄i ∈ R3. The sightline corresponding to point q′i is given by ui =
K−1q̄′i
‖K−1q̄′i‖

, where ‖ · ‖

2



stands for the two-norm of a vector, matrix or tensor. The 3D reconstructed surface is written S ⊂ R3.
The depth of the ith reconstructed 3D point Qi ∈ S is written µi ∈ R+. The geodesic distance between
two points A ∈ S and B ∈ S as measured on S is written dG(A,B), and the Euclidean distance is written
dE(A,B) = ‖A−B‖. The ‘reference’ geodesic distance easily measured from the flat fronto-parallel template
image is written dA,B. For the ith and jth point in particular it is written dij = ‖qi − qj‖. x̂ means the
true value of x (for x ∈ {q′i,qi,Qi,ui, µi, dij}).

2 Related Work

We review existing work on template-based isometric deformable 3D surface reconstruction. Mathematically,
the isometry constraint can be stated as:

dG(A,B) = dA,B ∀A ∈ S ∀B ∈ S. (1)

This constraint is nonconvex and has not received a formulation that easily fits in optimization since the
geodesic distance dG(A,B) on the deformed surface S does not have a general closed-form expression.
Two main formulations can be found in the literature: the inextensibility relaxation and the Euclidean
approximation.

The convex inextensibility relaxation. The principle that underlies the convex inextensibility relax-
ation [21, 17] is simple: the Euclidean distance between two points on an isometrically deforming surface
cannot grow larger than the geodesic distance. The isometry constraint (1) can thus be relaxed to the
following inextensibility constraint:

dE(A,B) ≤ dA,B ∀A ∈ S ∀B ∈ S. (2)

It is worth noting that (1)⇒(2) but that the opposite is not true, which is why the inextensibility con-
straint (2) is a relaxation of the isometry constraint (1). This relaxation applied to the set of point corre-
spondences was used in conjunction with the maximum depth heuristic. This heuristic consists in forcing each
3D point Qi to lie on the sightline ui by setting Qi = µiui and maximizing the depth of the reconstructed
3D points by an ad hoc iterative algorithm [17]. This algorithm accounts for noise in the template image by
slightly overestimating the geodesic distances dij , replacing them by dij + εT where εT is an upper bound on
the error made in the template point positions. No proof of convergence was given for this algorithm, though
in practice it seems to always converge in a few iterations. Another implementation of the inextensibility
constraint with the maximum depth heuristic was proposed in [23, 21]. This implementation solves an SOCP
where the cost function combines the depth of the reconstructed points and the negative reprojection error
is maximized. It uses a mesh-based surface model and applies the inextensibility constraint to the mesh
vertices. This cost function models noise in the input image point positions but not in the template point
positions. A similar approach was explored in [26].

The nonconvex Euclidean approximation. The Euclidean approximation replaces the geodesic dis-
tance in the isometry constraint (1) by the Euclidean distance for a set of closely spaced point pairs [22, 23,
29, 26]:

dE(A,B) ≈ dA,B ∀A ∈ S ∀B ∈ S dA,B ≤ ε, (3)

where ε ∈ R+ is a small constant. Note that enforcing dE(A,B) = dA,B in the Euclidean approximation (3)
would not allow the surface to deform at all, which is why dE(A,B) ≈ dA,B is used instead. In practice, the
constraint is embedded as a nonconvex penalty in a compound cost function, and generally leads to a quartic
cost term. Although this approximation works well in some cases it performs poorly when the surface bends
too strongly. Note that the Euclidean approximation (3) is a stronger constraint than the inextensibility
relaxation (2), though the former does not imply the latter.
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Summary. To summarize, existing work lacks two main important pieces. First, it lacks a convex solution
which would handle noise in both the template and input images. Second, it lacks a simple formulation of the
isometric constraint which could be easily used in a nonconvex optimization program. A direct consequence
is that no algorithm was proposed to exploit the ‘true’ isometric constraints. Our contributions address
these shortcomings.

3 Parametric Surface Modeling

We propose to use the template space Ω ⊂ R2 as a parameterization space for the surface S to be recon-
structed. This is in contrast to almost all previous works, which merely estimate the depth of a small set of
point correspondences from the input image. This way, we are able to solve minimization problems over a set
of continuous surfaces. We parameterize the set of admissible surfaces by Free-Form Deformations (FFD) [20]
based on uniform cubic B-splines [8]. In practice, this amounts to defining an embedding W` : Ω→ S that
maps the template space to the unknown surface as an FFD, thus parametrized by a grid of nu × nv 3D
control points `jk with j ∈ {1, . . . , nu} and k ∈ {1, . . . , nv}, which act as ‘attractors’ for the surface. For a
template point q = (u, v)> the surface point is explicitly given as:

W`(q) =

nu∑
j=1

nv∑
k=1

`jkNj(u)Nk(v). (4)

The functions Nj are the B-spline basis functions [8] which are cubic polynomials. If point qi = (ui, vi)
>

is fixed and known then the surface point W`(qi) is expressed as a linear combination of the points `jk,
and hence can be written in the form W`(qi) = Wi`, where Wi is a 3 × 3p matrix (p = nunv) depending
only on point qi, and ` is the vector obtained by concatenating all the control points `jk. Using an FFD
parameterization has three major advantages:

• Linear continuous surface model. A 3D point is given as a linear function of the control point
vector `. This is especially important in our application, where we will show how to directly reconstruct
a continuous surface with a convex formulation.

• Local control. The control points have a bounded (local) influence. The polynomials Nj have a
local support in cubic B-splines; the matrix Wi is thus sparse, which is important for computational
efficiency.

• Analytical convex smoothing expression. The surface’s bending energy, which we use as a smooth-
ing term, has a convex, Linear Least-Squares expression, in terms of the control points. This is again
important to facilitate a convex formulation (see below).

We define our smoothing term using the bending energy as:

Es(`) =

3∑
m=1

∫
Ω

∥∥∥∥∥∂
2Wm
`

∂q2

∥∥∥∥∥
2

dq (5)

where Wm
` (q) is the mth coordinate of the point. With the FFD, there exists a simple and Linear Least-

Squares closed-form expression for the bending energy:

Es(`) = ‖B1/2`‖2 = `TB` (6)

where B ∈ R3p×3p is a symmetric, positive, and semi-definite matrix which can be easily computed from the
second derivatives of the B-spline basis functions [5].

4 Convex Inextensible Methods

We propose a convex formulation of the inextensibility relaxation with the maximum depth heuristic that,
as opposed to [17, 23, 21, 26], accounts for noise in both the template and the input images. As in [23, 21],
our approach is formulated as an SOCP, but it does not require one to tune the relative influence of the
negative reprojection error and the depths in the cost function.

4



4.1 Prerequisite: A Convex Formulation of Template Noise

We first formulate the inextensibility relaxation with the maximum depth heuristic as an SOCP. This first
formulation is point-wise: it only reconstructs the point correspondences to Qi, using them via their sightlines
ui, i ∈ {1, . . . , n}. Importantly, noise is only accounted for in the template image. For any pair of points,
the inextensibility constraint ‖Qi −Qj‖ ≤ dij + εT can be written:

‖µiui − µjuj‖ ≤ dij + εT . (7)

The maximum depth heuristic leads to the following SOCP:

max
µ

n∑
i=1

µi

subject to ‖µiui − µjuj‖ ≤ dij + εT ∀(i, j) ∈ E

µi ≥ 0 i ∈ {1, . . . , n}

(8)

where µT =
(
µ1 . . . µn

)
, and E ⊂ {1, . . . , n}2 is a set of pairs of points to which the inextensibility

constraint is applied. This is merely a reformulation of [17] as an SOCP. It thus shows that this formulation
is convex, and does not require an iterative ad hoc minimization algorithm to be solved, as was proposed
in [17].

4.2 A Convex Formulation of Template and Input Image Noise

We now suppose that the inaccuracies are expressed in terms of image measurements.

4.2.1 Point-Wise Surface Model

Suppose that points are measured in the image with a maximum error of εI. This leads to:

‖q̂′i − q′i‖ ≤ εI, ∀i ∈ {1, . . . , n}. (9)

Since we are searching for the true 3D point Qi we can write:

q̂′i =
1

pT
3Qi

(
pT

1Qi

pT
2Qi

)
. (10)

Equation (9) can thus be rewritten as: ∥∥∥∥ 1

pT
3Qi

(
pT

1Qi

pT
2Qi

)
− q′i

∥∥∥∥ ≤ εI. (11)

Adding the inextensibility constraints and the maximization of the depths (which are given by pT
3Qi) and

we arrive at the following SOCP problem:

max
Q

pT
3

n∑
i=1

Qi

subject to

∥∥∥∥[ pT
1

pT
2

]
Qi − q′ip

T
3Qi

∥∥∥∥ ≤ εI pT
3Qi ∀i ∈ {1, . . . , n}

‖Qi −Qj‖ ≤ dij + εT ∀(i, j) ∈ E

pT
3Qi ≥ 0 ∀i ∈ {1, . . . , n}

(12)

where Q is the concatenation of the 3D points Qi, for i ∈ {1, . . . , n}. This is the first proposed convex
formulation which handles noise both in the template via εT and in the image via εI.
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4.2.2 Continuous Surface Model

We extend the above formulation (12) to incorporate the FFD-based continuous surface model proposed in
§3, expressing Qi in terms of the control points `, according to Qi = Wi`. We show that one may solve
for ` directly using SOCP. As in the previous approach, the linear smoothing term may be included in the
estimation scheme. It results in the following SOCP formulation:

max
`,r

pT
3

n∑
i=1

Wi`− r

subject to
∥∥∥(Wi`)

> [ p1 p2

]
− (Wi`)

>p3q
′
i
T
∥∥∥ ≤ εIWi`p3 ∀i ∈ {1, . . . , n}

‖(Wi −Wj)`‖ ≤ dij + εT ∀(i, j) ∈ E

(Wi`)
>p3 ≥ 0 ∀i ∈ {1, . . . , n}

λ
∥∥B1/2`

∥∥ ≤ r

(13)

where λ is the regularization weight (set to λ = 10−4 in our experiments since the surface is already
regularized by inextensibility, see the discussion in §5.4) and r is an additional variable added to the SOCP
problem for minimizing the regularization term. Compared to the previous approach, this one reduces the
number of steps to get an initial solution since no surface fitting is required as a post-processing. The
reprojection error is now a hard constraint that the FFD must satisfy.

5 A Nonconvex Isometric Method

Although the maximum depth heuristic used in the previous section gives reasonable initialization results,
it is merely a heuristic, not based on a valid principle related to surface properties. We therefore consider
next a new formulation based on the ‘true’ isometry constraints. We start by presenting the principles
underlying the 3D reconstruction of a continuous surface model under the isometric assumption expressed
by equation (1). We then present an estimation method based on point correspondences and our FFD-
based surface model. In particular, we will see that this leads to a Nonlinear Least-Squares problem for the
continuous surface model’s control points.

5.1 Using ‘True’ Isometry Constraints

Let the surface be modelled as a function W : R2 → R3, mapping the planar template to 3-dimensional
space. The inextensibility constraint is equivalent to having the continuous surface model W to be a local
isometry at every point over its domain. This condition may be expressed in terms of its Jacobian matrix.
Let J(q) ∈ R3×2 be the Jacobian matrix ∂W

∂q evaluated at point q. The map W is an isometry at q if

the columns of J(q) are orthonormal. This local isometry can be enforced for the whole surface with the
following Nonlinear Least-Squares constraint:∫

Ω

∥∥J(q)TJ(q)− I2

∥∥2
dq = 0. (14)

In practice, we discretize equation (14) as:

Ei(W) =

n′∑
j=1

∥∥J(gj)
TJ(gj)− I2

∥∥2
, (15)

where {gj}n
′

j=1 is a dense set of n′ 2D points in the template image space taken on a fine and regular grid (for
instance, a grid of size 30× 30). Note that the continuous surface model’s partial derivatives are computed
analytically [5]. This term Ei(W) measures the departure from isometry of the continous surface model
W. Our problem is then to minimize this quantity, over all possible surfaces, subject to the projection
constraints, namely that point W(qi) projects close to the image point q′i, i ∈ {1, . . . , n}.
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5.2 General Estimation Scheme

The general estimation scheme we use for implementing the isometry constraints consists in minimizing a
cost function of the following form:

min
µ,`
Ed(µ, `) + αEi(`) + βEs(`), (16)

where Ed, Ei, Es are the data, isometry, and smoothing terms respectively. The data term ensures the
consistency of the reconstructed surface with the data. It is derived in the next section. The isometry term
has been discussed directly above. The smoothing term promotes surfaces whose curvature is smallest, in
order to cope with, for instance, a lack of point correspondences. A more detailled discussed is provided in
the section after next. The relative influence of these three terms is controlled with the weights α ∈ R+

and β ∈ R+. In practice, α weighs the relative influence of the isometric deformation prior. Its optimal
value is thus application dependent, since a large value will cause the reconstructed surface to be almost
exactly applicable to the template, while a smaller value will relax isometry and let the surface to locally
stretch. In our experiments, we have chosen to favor strongly isometric surfaces, since handling this type of
surfaces has been our main goal in this paper, and set α = 106. A discussion on how to choose the value of
β is provided in §5.4.

As a consequence of the above discussion, all terms to be minimized are Linear or Nonlinear Least-Squares.
We thus use the Levenberg-Marquardt algorithm to solve the minimization problem. This algorithm has
proven extremely efficient for solving general geometric 3D computer vision problems [13]. Being iterative
it requires an initial estimate, which can be directly provided by one of our convex algorithms as discussed
in §5.5.

5.3 The Data-Term

We give an estimation scheme for smooth surfaces that uses point correspondences. Instead of considering a
hard upper-bounded constraint, as required by our SOCP approach in §4.2.2, which would require constrained
Nonlinear Least-Squares optimization, we include the reprojection error into the cost function, leading to an
unconstrained problem.

To simplify the formulation of the reprojection error, we introduce the depths µi as ancillary variables,
for reasons that shall become clear shortly. This is not strictly necessary, but this reduces the degree of
the reprojection error term and convexifies the overall cost function. Replacing Qi by Wi` and minimizing
the left-hand side of equation (11) gives an expression for the reprojection error associated with point
i ∈ {1, . . . , n}. However, the resulting expression is nonlinear with respect to the parameters `. A linear
reformulation is obtained by introducing the depths µ of the data points in the optimization problem, leading
to the following expression of the data term:

Ed(µ, `) =

n∑
i=1

∥∥W`(qi)− µiK−1q̄′i
∥∥2
, (17)

which measures the distance between the point W` on the surface and the point at depth µi along the
viewing ray defined by q′i.

5.4 The Smoothing Term

The point correspondences and the hypothesis of an inextensible surface may not be sufficient constraints.
For instance, imagine that there is no point correspondences in a corner of the surface. In this case, nothing
says how the surface behaves. The corners of the surface can bend freely as long as they do not extend
or shrink (like the corners of a piece of paper). To overcome this difficulty, we add a third term (the
smoothing term) in our cost function that favours non-bending surfaces. Note that usually, such terms are
used to compensate for the undesirable effects of under-fitting and over-fitting. Doing so is usually a problem
because it requires one to determine a correct value for the weight associated to the smoothing term (value β
in equation (16)). This balances the effective complexity of the surface against the complexity of the data.
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Its value is here not critical. Indeed, the complexity of the surface is limited by the fact that it is inextensible.
Any small value (but large enough not to be negligible, for instance β = 10−4) is thus suitable for the weight
of the smoothing term.

5.5 Initialization from a Point-Wise Surface Model

An initial estimate of the control point vector ` and of the reconstructed point correspondences µ is required
to start minimizing the nonconvex cost. It can be directly provided by one of our convex algorithms.

5.5.1 Initialization from our Point-Wise Surface Model Algorithm

Our convex point-wise surface model based algorithm of §4.2.1 directly provides the depth µ of the recon-
structed point correspondences. The control point vector ` is then obtained using Linear Least-Squares.
The idea is the consider the discrepancy between the estimated 3D points Qi, i ∈ {1, . . . , n} and the surface
estimate, measured by the following equation:

min
`

n∑
i=1

∥∥W`(qi)−Qi

∥∥2 ⇔ min
`

n∑
i=1

‖Wi`−Qi‖2 . (18)

We also include the Linear Least-Squares smoothing term (5) in the minimization, giving:

min
`

n∑
i=1

‖Wi`−Qi‖2 + λ‖B1/2`‖2. (19)

In this equation, λ ∈ R+ controls the desired amount of regularization, similarly to the smoothing term
discussed in §5.4. We fix this parameter to λ = 10−4 since the FFD function is internally regularized. It
thus only needs external regularization in areas with severely sparse data, where external regularization will
not compete with any other terms. A short calculation gives the following closed-form solution:

` =

(
n∑
i=1

W>i Wi + λB

)−1 n∑
i=1

W>i Qi.

5.5.2 Initialization from our Convex Continuous Surface Model Algorithm

Our convex continuous surface model based algorithm of §4.2.2 directly provides the control point vector `.
The depth µ of the reconstructed point correspondences is then obtained, for each point independently, by
solving the point’s error following the data term (17):

min
µi

‖W`(qi)− µiK−1q̄′i‖2.

This is a convex, Linear Least-Squares problem which has the following closed-form solution:

µi =
(
q̄′>i K−TK−1q̄′i

)−1
q̄′>i K−TW`(qi).

6 Experimental Results

We test and compare several algorithms from state of the art for template-based surface reconstruction. The
details of these are given in table 1.

6.1 Experiments on Synthetic Data

In our experiments, we first use synthetic data in order to assess the reconstructed surfaces against ground
truth, and thus to measure some 3D surface error.
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Shortname Description Surface model

PerrioInit Iterative ad hoc minimization of the maximum depth heuristic [17] Point-wise

PerrioRef Nonlinear refinement of the 3D points obtained with PerrioInit [17] Point-wise

Salz A convex formulation similar to PointSOCP handling noise with a 3D error [21] Triangular mesh

PointSOCP Our convex point-wise method of §4.2.1 handling noise with hard constraints Point-wise

FFDInit The surface reconstructed from PointSOCP as described in §5.5.1 Continuous FFD

FFDSOCP Our direct convex surface reconstruction method of §4.2.2 followed by §5.5.2 Continuous FFD

FFDRefPoints Our optimal nonconvex surface reconstruction algorithm of §5 Continuous FFD

Table 1: Summary of the algorithms tested and compared experimentally.

6.1.1 Synthetic Surface Generation and Measured Errors

Images. We generated isometric surfaces using the code provided by [16]. The pieces of paper are of
size A4 (i.e. 297 × 210mm2) and they are represented by a triangular mesh with 79,158 faces. The input
images are simulated by projecting the deformed piece of paper with a virtual perspective camera placed at
approximately 1m of the surface and with a focal length of 36mm. As shown in figure 1, different texture-
maps were used. A total number of 539 different images were generated using this process. A simple model
of illumination (flat shading) was used to create the images with a single light source placed near the optical
center simulating a flash light. The template image size ranges from 1, 000 × 707 pixels to 2, 291 × 1, 620
pixels and always has the aspect ratio of an A4 sheet. The input image size is fixed to 1, 024 × 768 pixels.
In the generation process, special care was taken to get high quality images by using, in particular, an
anti-aliasing mechanism (the input images were first generated at a resolution of 4, 096 × 3, 072 pixels and
then subsampled to their final resolution of 1, 024× 768 pixels).

Figure 1: Examples of generated synthetic images. This figure shows the five texture-maps we used. The
first row shows the template image. The relative size of these thumbnails corresponds to the true relative
size of the template images. The second and third rows show examples of generated input images.

Point correspondences. We used two types of point correspondences. The isometric surface genera-
tor [17] provides a surface represented as a triangular mesh with 79,158 faces whose vertices are located on
a regular grid of size 238× 168. The first type of point correspondences we used were extracted from these
vertices (varying the number of extracted points and, if necessary, adding some noise on their location). The
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second type of point correspondences we used were SIFT keypoints automatically extracted from the gener-
ated images and matched using the FBDSD algorithm [18]. In this second case, the point correspondences
are of course very realistic even though the images were synthetically generated.

Measured reconstruction errors. The discrepancy between the reconstructed and the true 3D surfaces
was quantified with two measures, depending on the surface model used by the algorithms. The point-wise
reconstruction error (pwre), denoted ep, can be measured for all the algorithms. It is defined by:

ep =
1

n

n∑
i=1

‖Qi − Q̂i‖, (20)

where n is the number of point correspondences, Qi is the ith reconstructed 3D point and Q̂i is the true 3D
location of that point. For algorithms that use more complex surface models, such as a triangular mesh or
an FFD-based continuous surface model, we measured the surface reconstruction error (sre), denoted es. It
is defined as the integral difference between the reconstructed surface W` and the true surface Ŵ:

es =

∫
Ω

∥∥W` − Ŵ∥∥dq. (21)

6.1.2 Reconstruction Errors with Generated Point Correspondences

In this experiment, we used all the 539 randomly generated paper sheets and we varied two parameters,
while measuring pwre and sre:

• Point correspondence noise σ. We added Gaussian noise to the position of the point correspon-
dences with three different standard deviations σ: 0, 1 and 2 pixels, keeping n = 247. The results are
in figure 2.

• Number of point correspondences n. We subsampled the point correspondences with three set
sizes: 165, 247 and 368 points, keeping σ = 1 pixel. The results are in figure 3.

We observe that the iterative algorithms PerrioInit and PerrioRef perform well in the absence of noise, but
that their performances degrade substantially with noise. In the SOCP-based algorithms (Salz, PointSOCP,
FFDSOCP and FFDInit), Salz works best for very small amounts of noise σ ≈ 0 pixels, and closely follows
PointSOCP and FFDInit. We can see that FFDSOCP gives poor results in most cases. This comes from the
fact that this algorithm has to meet hard reprojection error constraints and the continuous surface model
may lack flexibility; this may be due to an overweighted smoothing term or an underestimated number of
control points. Finally, we can see that FFDRefPoints obtains the best results, except in the absence of noise,
but the error is marginal at this point. This algorithm has the nice property of being rather insensitive to
noise and number of point correspondences.

6.1.3 Reconstruction Errors with Matched Keypoint Correspondences

This experiment completes the previous one by drawing error statistics from automatically matched keypoint
correspondences. Those were extracted as SIFT points [14] and matched using local consistency with the
FBDSD method [18]. Contrarily to generated point correspondences, one cannot vary parameters such as
noise. However, the whole setup is more realistic, and closely represents the type of results expected on
real data, while providing ground truth for error assessment. The results are in figure 4. Clearly, things
are consistent with the previous set of experiments, confirming their validity. We have that FFDRefPoints
performs best, followed by Salz with a discrepancy of a little less than an order of magnitude. The other five
tested methods follow, all more or less at an order of magnitude of Salz, at the exception of FFDInit which
stays a bit closer to Salz than the others.

10



σ = 0 pixels noise, n = 247 point correspondences
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σ = 1 pixel noise, n = 247 points correspondences

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

P
er

rio
In

it

P
er

rio
R

ef
in

ed

S
al

z

P
oi

nt
S

O
C

P

F
F

D
S

O
C

P

F
F

D
In

it

F
F

D
R

ef
P

oi
nt

s

P
W

R
E

 (
m

m
)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

S
al

z

F
F

D
S

O
C

P

F
F

D
In

it

F
F

D
R

ef
P

oi
nt

s

S
R

E
 (

m
m

)

σ = 2 pixels noise, n = 247 points correspondences
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Figure 2: pwre (left column) and sre (right column) for n = 247 point correspondences for σ = {1, 2, 3}
pixels image noise. We used boxplots with whiskers to show the three quartiles (thus including the median),
the min and max errors, and the outliers shown by the red plus signs.

11



σ = 1 pixel noise, n = 165 point correspondences
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σ = 1 pixel noise, n = 368 point correspondences
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Figure 3: pwre (left column) and sre (right column) for n = {165, 368} point correspondences for σ = 1
pixel image noise.
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Figure 4: pwre (left) and sre (right) using automatically matched SIFT keypoints.
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6.1.4 Computation Time

For all experiments, we have monitored the computation time of all algorithms. We observed that, as
expected, computation time is almost independent of image noise, but is strongly affected by the number
of point correspondences. We therefore show representative results only for this parameter, in figure 5. We
observe that SOCP-based methods are quite slow, as well as our nonconvex FFDRefPoints method. Salz is
an order of magnitude faster than the other SOCP methods. This is due to the reduced variable set which
it optimizes over, thanks to a learnt surface model. PerrioInit and PerrioRef are extremely fast, as well as the
surface initialization method FFDInit.
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Figure 5: Computation time for σ = 1 pixel image noise and 165 (left) and 368 (right) point correspondences.

6.1.5 Conservation of Length

In this experiment, we measured to which extent our algorithms reconstruct an isometric surface. We
evaluated this quantitatively by measuring the discrepancy between straight lines in the template and the
geodesic corresponding to its endpoints in the reconstructed surface. We used the same data as in the
previous experiments. For each surface, we randomly chose 10,000 pairs of points in the template image.
For each pair of points (gi,gj), the length l3Dij of the geodesic between the 3D points W`(gi) and W`(gj)
was computated as:

l3Dij =

ng∑
k=1

∥∥∥W`(gi + k
ng
‖gj − gi‖

)
−W`

(
gi + k−1

ng
‖gj − gi‖

)∥∥∥ , (22)

where ng is the number of intermediate points used for the approximation (we use ng = 200 since we
experimentally observed that the approximation stabilizes for values of ng greater than 180). The length
l3Dij of the geodesic is plotted against the reference length l2Dij in figures 6 and 7 against noise and number of
points respectively.

We make the same observations on both sets of graphs. We observe that FFDInit violates isometry
to a small extent. FFDSOCP however, despite using the same inextensibility relaxation of isometry as
FFDInit, violates isometry to a large extent. This is explained by the fact that the continuous surface
model, incorporated directly in FFDSOCP, may not be flexible enough to be able to force isometry. Finally,
our nonconvex method FFDRefPoints respects isometry to a very good extent, and thus can be said as
reconstructing truly isometric surfaces, as required.

6.1.6 Gaussian Curvature

The Gaussian curvature is the product of the two principal curvatures (which are the reciprocal of the radius
of the osculating circle). For an isometric and developable surface, the Gaussian curvature vanishes. However,
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Figure 6: Plots of the length of geodesics measured on the reconstructed surfaces against the true length for
σ ∈ {0, 1, 2} pixels image noise and n = 247 point correspondences. The red diagonal line is the place where
all the blue points should lie for an exactly isometric surface.
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Figure 7: Plots of the length of geodesics measured on the reconstructed surfaces against the true length
for and σ = 1 pixel image noise and n ∈ {165, 247, 368} point correspondences. The red diagonal line is the
place where all the blue points should lie for an exactly isometric surface.
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the Gaussian curvature is a highly nonlinear function of the surface parameters, and it would be difficult to
minimize efficiently compared to the isometry constraint. In this experiment, we checked if this property
was satisfied by the continuous surfaces reconstructed with FFDSOCP, FFDInit, and FFDRefPoints. We used
the same 539 reconstructed surfaces as in the previous experiments. The Gaussian curvature, denoted κ,

was computed for 10,000 randomly chosen points on the surface with the formula κ = det(II)
det(I) , where I and II

are the first and the second fundamental forms of the parametric surface [11]. The results of this experiment
are reported in table 2. It shows that, on average, the Gaussian curvature of the surfaces reconstructed
using FFDRefPoints are consistently close to 0. It also shows that FFDRefPoints gives Gaussian curvatures
which are two orders of magnitude lower than those obtained with FFDInit. These results demonstrate that
the surfaces reconstructed with our approach FFDRefPoints are truly isometric, but also preserves the local
surface structure of the template. On the other hand, FFDSOCP does not preserve well this local surface
structure.

Mean Std deviation Median Minimum Maximum

FFDSOCP 2.82× 10−4 6.16× 10−2 4.03× 10−5 1.31× 10−11 8.03× 101

FFDInit 4.81× 10−5 3.30× 10−3 1.15× 10−5 3.14× 10−12 6.91× 100

FFDRefPoints 4.94× 10−7 1.42× 10−6 1.51× 10−7 3.24× 10−14 2.35× 10−4

Table 2: Statistics on the absolute value of the Gaussian curvature for 539 reconstructed surfaces and 10,000
points per surface. The number of point correspondences and the noise intensity are fixed to intermediate
values (n = 247 and σ = 1 pixel).

6.1.7 Hyperparameter Tuning and Sensitivity Analysis

This set of experiments on synthetic data is intended to test the sensitivity of the algorithms on the various
hyperparameters they involve (such as the noise level). All the experiments were conducted on the same
synthetic data as previously with n = 247 point correspondences.

Method PointSOCP. In the PointSOCP method, we study the influence of the parameters εT and εI of
equation (12). These parameters account for the noise in the template and the input images respectively.
For each level of noise σ added to the data point, we search the best values of εT and εI, i.e. the values
that minimize pwre. The results are showed in figures 8 and 9. These figures show that setting correctly
εI and εT may be critical. Figure 9 shows that there is an almost linear relationship between the standard
deviation of the noise added to the data point and the supposed noise of the algorithm. Both figures show
that, as a rule of thumb, εT = εI = 2σ is an optimal choice, and that in practice, σ being generally unknown,
overestimating is better than underestimating εT = εI.

Methods PerrioInit, PerrioRef. These two methods have a single parameter to be set: εT , the supposed
noise in the template image. The influence of this parameter is tested using exactly the same principle as
for the PointSOCP algorithm. The results are displayed in figures 10 and 11. We draw the same conclusions
as for PointSOCP: the results do depend on the hyperparameter. As a rule of thumb, for both PerrioInit and
PerrioRef, εT = 4σ seems to be a quasi optimal choice, and εT is better overestimated.

Method Salz. As described in [21], the method Salz has a weight wd that controls the relative influence
of two terms in a cost function to minimize (one of these terms accounts for the consistency between the
reprojection of the 3D points and their actual location in the input image, the second one quantifies the
distance between the 3D points and their corresponding line of sight). In [21], the authors recommend to
set wd to 2

3 . We studied the influence of this parameter using a principle similar to the one used previously
with two noticeable differences. First, for computational complexity purposes, we added a Gaussian noise to
the data points only in the input image (which explains why we used standard deviations twice as large as
in the previous cases). Second, the quantification of the quality of a reconstructed surface is evaluated with
sre instead of pwre. The results are shown in figures 12 and 13. These figures show that a value of 2 for

16



Standard deviation of the Gaussian noise added to the data points
σ = 0.5 pixels σ = 1 pixel σ = 1.5 pixels

M
ea

n
cu

rv
e

+
/
-

st
d

.
d

ev
.

Figure 8: Influence of the εT = εI hyperparameter in PointSOCP. Evolution of pwre in function of the noise
added to the data points (columns of the table) and of the values of εT and εI (abscissa of the plots). We
used the same noise intensity in the template and the input images to alterate the data points. We further
considered that εT = εI. The first row shows the evolution of pwre for all the 539 test cases. The second
row shows the average curve (solid line) and the standard deviation (dashed lines).

Figure 9: Influence of the εT = εI hyperparameter in PointSOCP. Optimal supposed noise εT = εI in
function of the noise added to the data points.
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Figure 10: Influence of the εT hyperparameter in PerrioInit and PerrioRef. Evolution of pwre in function of
the noise added to the data points (columns of the table) and of the values for εT (abscissa of the plots).
We used the same noise intensity in the template and the input images to alterate the data points. The
first and third rows show the evolution of pwre for all the 539 test cases for the PerrioInit and PerrioRef
algorithms respectively. The second and fourth rows show the average curve (solid line) and the standard
deviation (dashed lines) for the PerrioInit and PerrioRef algorithms respectively.

PerrioInit PerrioRef

Figure 11: Influence of the εT hyperparameter in PerrioInit and PerrioRef. Optimal supposed noise εT in
function of the noise added to the data points.
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wd is preferable to 2
3 . Besides, when overestimated, wd does not degrade the results much compared to its

optimal value.
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Figure 12: Influence of the wd hyperparameter in Salz. Evolution of sre in function of the noise added to
the data points (columns of the table) and of the values for the weight wd (abscissa of the plots) of the Salz
algorithm. Here, only the points in the input image are distorted. The first row shows the evolution of sre
for all the 539 test cases. The second row shows the average curve (solid line) and the standard deviation
(dashed lines).

Figure 13: Influence of the wd hyperparameter in Salz. Optimal weight wd in function of the noise added to
the data points.

6.2 Experiments on Real Data

We compared our algorithms to existing ones on several real datasets. The three first were provided by other
authors and we created the last one. Our nonconvex method FFDRefPoints gives the best results in all cases.
We deal with the problem of establishing point correspondences with different state-of-the-art methods, from
direct video stream tracking [9], robust fitting of a warp function and local consistency based filtering [18].
The first method is only applicable for videos, but is probably the best choice in this case. The second and
third methods are applicable to two images. The second method works very well if the images are similar
to each other, while the third one is specifically designed to the wide-baseline case, where the input image
may be very different from the template.
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The checkerboard dataset [17]. This first dataset, provided by [17], shows a bent piece of paper printed
with a checkerboard pattern. For this dataset, the point correspondences were established manually by
clicking. Ground truth was available from stereo reconstruction, and allowed use to compute pwre for all
algorithms:

PerrioRef PointSOCP Salz FFDInit FFDRefPoints
2.39mm 2.26mm 4.74mm 2.26mm 1.99mm

A visualization of the reconstruction surfaces is shown in figure 14. All methods give decent qualitative
visual results. However, in terms of 3D accuracy, Salz gave the worst results, with a 3D error about twice as
large as the other methods. PerrioRef, PointSOCP and FFDInit gave similar 3D errors, while FFDRefPoints
gave the lowest average 3D error, below 2mm.

Stereo reconstr.

Template
image

PerrioRef PointSOCP Salz FFDInit FFDRefPoints

Figure 14: The checkerboard dataset. Reconstruction results obtained with several. First row: input
image along with a reprojection of the reconstructed 3D surface. Second row: reconstructed surface from a
different point of view. Note that the stereo reconstruction (first column) is not a monocular algorithm: it
is used as ground truth.

The self-occluded paper dataset [9]. This second dataset, provided by [9], shows a piece of paper with
a printed natural texture and bent in a way that creates a strong self-occlusion (about half of the surface
is hidden in the input image). This makes this dataset difficult for the algorithms since the hidden part of
the surface has to be inferred from the visible parts only from isometry. The point correspondences were
obtained by sampling an image warp function which was fitted using a direct method to a video stream.
The reconstruction results are shown in figure 15. For this dataset, we had no ground truth, and could not
report quantitative results. However, we can observe that all methods recover the paper’s global shape to
some extent. However, only Salz, FFDInit and FFDRefPoints were able to reconstruct the self-occluded part.
Our nonconvex method, FFDRefPoints, clearly does better in recovering the paper’s shape than the others,
even in the self-occluded part, which we consider as a very successful result.

The deforming paper dataset [22]. This third dataset, provided by [22], shows a piece of paper being
smoothly bent in front of the camera. The deformation does not create self-occlusions or external occlusions.
However, a difficulty is that the point correspondences provided in this datasets contain noise and a few
mismatches. Another difficulty is that the imaging conditions are close to affine, while all tested algorithms
explicitly use a perspective camera model. We discard them prior to applying the reconstruction methods,
by robustly fitting a 2D FFD warp [20, 18] using an M-estimator, and sampling it over a (25× 25) regular
grid. This process reduces the amount of noise in the point positions. The initial correspondences and the
estimated warp can be seen in figure 16. The reconstruction results are showed in figure 17. We do not have
groundtruth for this dataset. However, the surface deformation is so simple that the reconstruction quality
can be easily assessed visually, at least qualitatively. We observe that the reconstruction of all methods
captures the surface’s bulk shape for all frames. All methods then generate artefacts on at least some of the
frames. These happen at different places of the surface. The only exception is FFDRefPoints, which visually
produces the best surface reconstruction for all frames, closely followed by PointSOCP. The largest artefacts
seems to be provided by PerrioRef, FFDInit and FFDSOCP, while PerrioInit and Salz do slightly better.
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PerrioRef PointSOCP Salz FFDInit FFDRefPoints

Figure 15: The self-occluded paper dataset. Reconstruction results for several algorithms in the pres-
ence of a self-occlusion (the point correspondences were automatically extracted using [9]). Note how our
algorithm FFDRefPoints recovers a reasonable shape for the occluded part.

The zooming paper dataset. We propose this new dataset, which is original in that it provides several
calibrated levels of zoom for the same surface and the same camera (we here show four levels of zoom in
increasing order). The stronger the zoom, the more affine the imaging conditions become, and thus the
more challenging the data become for the tested perspective algorithms. The template was matched to the
input image entirely automatically using FBDSD [18]. The intuition in FBDSD is that, for a surface, points
close in space will tend to move ‘together’; mismatches thus form locally inconsistent motion fields. The
correspondence results, as well as the estimated image warp, are shown in figure 18. The 3D reconstruction
results are shown in figure 19. All methods but FFDSOCP find the surface’s bulk shape. Because of the
high density of point correspondences, PerrioInit, PerrioRef, Salz, PointSOCP and FFDInit obtain very neat
and smooth results, up to some small artefacts. Our refinement method FFDRefPoints clearly gives the best
results in terms of visual impression.

7 Conclusion

We have presented new approaches for monocular 3D reconstruction of inextensible surfaces imaged by a
perspective camera. First, we have proposed an SOCP formulation of the problem that accounts for noise
in both the template and the input images. Second, we have designed an algorithm that directly integrates
a continuous surface model based on Free-Form Deformations within the SOCP formulation. Third, we
have given a nonconvex algorithm which, using Nonlinear Least-Square refinement, obtains the continuous
surface model parameters by refining an initial guess. We have given a thorough experimental evaluation of
the sensitivity of our methods and others from the literature to their hyperparameters, and have compared
all methods in terms of reconstruction accuracy on simulated and real datasets. This has allowed us to draw
the following important conclusions.

(i) SOCP methods are generally working reasonably in terms of accuracy, though they are slow, and do
not scale well with the number of point correspondences or surface model complexity. They are sensitive
to the selected noise level, and a bit less to the smoothing parameter. (ii) Incorporating a surface model
in the SOCP framework has not worked well in most of our experiments, and we do not recommend to
do so. (iii) Finally, nonlinear refinement is important, and improves the result of the tested methods by a
substantial margin. We have showed that our formulation of nonlinear refinement produces truly isometric
deformations, as opposed to initialization methods. Being able to enforce this type of physical constraints is
one of the keys to increase 3D accuracy.

In our future work, we are planning to use the image color information directly to further improve
3D reconstruction. We would want to initialize a so-called direct approach from an existing feature-based
method, so as to be able to use the whole image content, which we believe is particularly important for tasks
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Figure 16: The deforming paper dataset. Sample frames, point correspondences and estimated image
warps.

such as reconstructing a deformable surface, which by definition requires localized information.
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Figure 17: The deforming paper dataset. 3D reconstruction results for all compared methods.
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Figure 19: The zooming paper dataset. 3D reconstruction results for all compared methods.
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