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1. Context and Objective
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- Computer vision applied to experiments in fluid mechanics
- Densely measure the Laminar Poiseuille Flow in an Hele-Shaw cell
- Pattern printed in the liquid using molecular tagging
- Tracking and volume reconstruction by combining:
   - direct image registration 
   - a volumetric image formation model
- Use as few physical assumptions as possible
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Molecular tagging based on photobleaching
- Truly non-invasive
- A molecular tracer (fluorescein) is uniformly 
   mixed to the water
- When excited with a `green laser', the tracer 
   becomes fluorescent
- The fluorescence can be inhibited using a
   powerfull `blue laser'

3. Direct Image Registration

Reference image What we would observe
with a uniform motion along

the z-direction of the cell
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When the brightness constancy assumption is satisfied then direct 
image registration consists in minimizing the intensity difference 
between the input image (  ) and the reference image (  ):

In our case, the brightness constancy assumption is not satisfied due 
to the image formation model and the nature of the observed flow:

- Bilinear and bicubic interpolation introduce a systematic bias
- Problem solved by fitting a regularized B-spline to the image
  (the images are thus considered as continuous functions)
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Motion model and image formation model
Key idea: consider that the volume is
made of layers moving independently
from each other.

Additional hypotheses

Final optimization problem

Symmetry. The flow is symmetric with respect to the centre of the
cell in the z-direction.
Positivity. All the translations are downward translations.
Temporal consistency. A layer never goes upward.
Spatial consistency. The inner layers are faster than the layers
close to the walls of the cell.
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Theoretical Poiseuille flow model

[http://www.columbia.edu/cu/gsapp/BT/RESEARCH/Arch-atmos]
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3D view of the computed flow (front: acquired images, side: computed deformations)
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Period when the steady laminar
Poiseuille flow is established

Velocities computed with 
our approach

Average of the computed
velocities
(0.6054 pixels / image)

Average velocity computed 
from the water/air interface
(0.5774 pixels / image)

Comparison between the
computed velocities and the

ground truth velocities
(determined from the 
water/air interface)

+ computed deformation
(and image formation

model)

Deformed pattern Corresponding true image
Pattern Comparison of the initial pattern

warped using the translations
computed with our approach

and of the corresponding image
of the video
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