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Abstract
Standard direct image registration consists in estimating the geometric warp between a source and a target images
by maximizing the photometric similarity for the pixels of a Region of Interest (ROI). The ROI must be included
in the real overlap between the images otherwise standard registration algorithms fail. Determining a proper ROI
is a hard ‘chicken-and-egg’ problem since the overlap is only known after a successful registration. Almost all
algorithms in the literature consider that the ROI is given. This is generally either inconvenient or unreliable.
In this paper we propose a new method that registers two images without using a ROI. The key idea of our method
is to consider the off-target pixels as outliers. We define the off-target pixels as those pixels of the source image
mapped outside the target image by the current warp. We use the classical robust M-estimation framework to
handle both the off-target pixels and the usual outliers caused, for instance, by occlusions. With our formulation,
the true image overlap is defined as the set of inliers.
Experiments on synthetic and real data with the homography and Free-Form Deformation show that our method
outperforms standard approaches in terms of accuracy and robustness while precisely retrieving the overlap in
the source and target images.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Image Processing and
Computer Vision—Registration

1. Introduction

Image registration is the problem of determining a warp that
aligns a source image and a target image. It is a problem
of wide interest in computer vision and medical imaging,
with applications such as image mosaicing [IA99], super-
resolution [HBA97], and tracking [HPN99]. The warp is for
instance a homography or a Free-Form Deformation.

There are two main approaches to image registra-
tion [Sze06]: the feature-based and the direct (or pixel-
based) approaches. The feature-based approach [TZ99] es-
timates the warp parameters from feature correspondences.
The direct approach [Bar08, IA99], that we follow in this
paper, is to minimize a colour discrepancy measure. For
standard direct algorithms, this measure is computed over
a given set of pixels R called the Region of Interest
(ROI) [BGM04, Bar08]. LetW : R2×Rp → R2 be a warp
parametrized by a vector p ∈ Rp. In basic form the direct
approach based on the Brightness Constancy Assumption

(BCA) is:

min
p ∑

q∈R
d(q;p)2, (1)

with d(q;p) = ‖S(q)− T (W(q;p))‖, S the source image,
and T the target image. An image I is considered as a con-
tinuous function from ΩI ⊂ R2 to Rh with h the number
of colour channels and ΩI the domain of the image. Bilin-
ear interpolation is used to evaluate an image at non-integer
locations. The cost function in (1) can be made robust so
as to handle occlusions and specularities that violate the
BCA. A classical framework is to use an M-estimator, as
in [OB95, AGKM07]:

min
p ∑

q∈R
ρ
(
d(q;p)

)
. (2)

As will be seen later, our contribution exploits the properties
of saturated M-estimators (an M-estimator is said to be sat-
urated when it is constant above a certain threshold). In this
paper, we use Tukey’s bisquare ρ-function without any loss
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Registration resultRegistration result
Pixels that do not
belong to the overlap
discovered with our
method while
registering the images

Example of rectangular
region of interest

Source imageSource image Target imageTarget image

Figure 1: We propose a new algorithm that does not require
one to define a region of interest (ROI). Our algorithm dis-
covers the exact overlap between two images while register-
ing them. Using the rectangular ROI in dashed line defeats
classical methods since it contains pixels that do not belong
to the overlap.

of generality:

ρ(x) =

 c2

6

(
1−

(
1− x2

c2

)3
)

if |x| ≤ c
c2

6 otherwise,
(3)

with c a constant determining the sensitivity to outliers of
the M-estimator. A value x such that ρ(x) = c2

6 corresponds
to an outlier. Ideally, this constant should be 4.685 times
the standard deviation of the noise contained in the im-
ages [AGKM07]. In practice, we consider that the standard
deviation equals 20% of the maximal pixel value.

Problem (1) is a non-linear least-squares problem that can
be solved iteratively using for instance the Gauß-Newton al-
gorithm [Bjö96]. Problem (2) can be solved with an Itera-
tively Reweighed Least-Squares algorithm [DKSP03].

The overlap and the RoI. The direct approach to image
registration is interesting because it does not rely on feature
correspondences. However, standard registration algorithms
require a ROI R included in the overlap of the images. This
is a difficult ‘chicken-and-egg’ problem since the overlap
can only be determined after a successful registration. There
is no known satisfactory solution to this problem.

Let OS be the image overlap, i.e. the set of pixels of the
source image that are also seen in the target image:

OS =
{

q ∈ΩS | q′ ∈ΩT and S(q)≈ T (q′)
}
, (4)

where q′ is the pixel q transformed with the true deformation
between S and T . It is obvious that the cost function in (1) or
in (2) cannot be evaluated at those pixels that do not belong
to OS. As a consequence, R must be included in OS, oth-
erwise the registration algorithms based on (1) and (2) will

fail. Besides, it is better to have a ROI as large as possible
in order to have the greatest quantity of information to esti-
mate the warp. The problem here is that the real overlap OS
is known only after a successful registration of the images.

Previous work. As we review in §2.1, the ROI is often
a polygonal region in the source image defined either by
the user or by some ad hoc means [Bar08]. This lacks au-
tomatism and may be unreliable. The adaptive ROI [PA04]
is another approach. It considers the entire domain of the
source image as an initial ROI and updates it during the
optimization process. As we review in §2.2, the cost func-
tion of [PA04] is extremely hard to minimize and has global
minima that do not correspond to the correct solution (see
figure 2).
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Figure 2: Profile of the cost functions of the adaptive ROI
approach of [PA04] (red dashed curve) and our approach
(green solid curve). The source and the target images are
640 pixels wide. The simulated warp is a translation along
the x-axis parametrized by ∆x (more details in §2.2). The
cost function of [PA04] vanishes for a warp that creates no
overlap while our cost function has only one global minima
that corresponds to the true translation (i.e. ∆x = 0).

Contribution. We propose a novel approach to direct image
registration. It is fundamentally different from standard ap-
proaches in that it does not need a ROI. This is made possible
by considering the off-target pixels as outliers; the theoreti-
cal foundations of this principle are explained in §3. The cost
function we propose to optimize takes into account all the
pixels of the source image. A fixed penalty that corresponds
to the one given to usual outliers is associated to the off-
target pixels. We then use the standard robust M-estimation
framework of equation (2) to handle both the usual out-
liers and the off-target pixels in a unified way. Our new ap-
proach has several advantages. First, the proposed cost func-
tion does not have trivial minima (see figure 2). Second, it
solves all the above-mentioned problems related to the ROI.
Third, the overlap is automatically obtained as the set of in-
liers.

Although generic, our approach is experimented with two
specific warps: the homographic and the Free-Form Defor-
mation warps, briefly reviewed in §4.1. The robustness and
accuracy of our approach is compared to other ones in §4.2
and §4.3.
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2. Region of Interest: State of the Art

2.1. Rectangular Region of Interest

A common approach used to define the ROI consists in
guessing a maximal per-pixel displacement. The ROI is then
chosen as a rectangle obtained by removing to the source
image domain a margin of width larger than the hypothe-
sized maximal displacement. Ideally, the width of this mar-
gin should be as close as possible to the actual maximal
displacement, rarely known before registration. The margin
width is commonly overestimated so that the optimization
algorithm will not fail. Nonetheless, a large ROI provides
more information to estimate the warp accurately. Moreover,
the size of the ROI affects the profile of the cost function
in (1). A simple experiment inspired by [PA04] illustrates
this phenomenon. Figure 3 shows, for different margin sizes,
the evolution of the cost function versus a single shift pa-
rameter ∆x (the amplitude of a translation along the x-axis).
The source and the target images are identical (shown in fig-
ure 4) except for a Gaussian noise with standard deviation
equal to 5% of the maximal pixel value. Figure 3 shows
that a small margin (a large ROI) results in a smooth cost
function but has dramatically restricted range of admissible
translations. Using a larger margin (a smaller ROI) increases
the range of possible translations but creates a lots of local
minima in the cost function.
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Figure 3: Profile of the cost function in problem (1) for rect-
angular ROI with margins ranging from 10 to 130 pixels (for
images of size 640×480).

Large margin
(small RoI)

Small margin
(large RoI)

Range of admissible
transformations

Quantity of
information available
for the registration

Table 1: Respective advantages and disadvantages of the
large and small margins. Note that neither of them has all
the advantages.

2.2. Adaptive Region of Interest

An alternative to the rectangular ROI has been proposed
in [PA04]. In this approach, the fixed ROI R is replaced by
an adaptive ROI RA(p):

min
p ∑

q∈RA(p)
d(q;p)2. (5)

For a given set of parameters p, RA(p) contains all the pixels
(except for a 1-pixel margin used to compute the target im-
age derivatives by finite differences) from the source image
that, once warped, belongs to the domain of the target im-
age, i.e. RA(p) = {q ∈ ΩS | q′ ∈ ΩT } with q′ =W(q;p).
Although this method does not require one to define a ROI,
it is not fully satisfactory. First, problem (5) is badly posed
in the sense that there exists an infinite number of minima
that do not correspond to the correct warp parameters. These
minima appear when there is no overlap between the source
and the warped target images. This fact is illustrated with
an experiment similar to the one used in §2.1. We observe in
figure 2 that the cost function of problem (5) is null (and thus
minimal) as soon as the domains do not overlap (|∆x|> 640).
Second, the fact that RA(p) depends on p makes problem (5)
hard to solve rigorously. The authors of [PA04] propose to
neglect the dependency on p and alternate the estimation
of RA and p. Third, the adaptive ROI algorithm is not robust
to outliers and, as such, it cannot properly handle occlusions
and specularities.

3. Direct Image Registration without Region of Interest

We propose a new method to direct image registration that
does not need a ROI. It thus avoids the above mentioned
problems related to the ROI. Our new cost function uses
all the pixels of the source image, as the adaptive ROI
of [PA04]. However, as the example of figure 3 shows, our
cost function has no trivial minima. We will show that it is
also much easier to optimize rigorously. The key idea of our
method is to penalize the off-target pixels with a fixed cost.
The cost associated to the other pixels remains the usual ro-
bust colour discrepancy of (2). To some extent, this maxi-
mizes the size of the overlap between the two images. We
use the same penalty for the off-target pixels and the outly-
ing pixels, for reasons explained below.

Derivation. Imagine a target camera with an unbounded
field of view. Such a camera would produce images with an
infinite domain. Imagine now that a plane with a rectangular
hole is placed between the camera and the observed scene, as
figure 4(b) illustrates. The part of the scene visible through
the hole corresponds to the actual target image T . The rest
of the scene is not seen because it is occluded by the plane,
exactly as for the pixels hidden by an external occluder, as
shown in figure 4(a). With this reasoning, it becomes natural
for one to handle off-target pixels as usual outliers.

A direct yet incomplete mathematical statement of our

c© 2010 The Author(s)
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Figure 4: Pixels out of the field of view (b) can be considered
as usual outliers (a).

idea as a minimization problem is:

min
p ∑

q∈ΩS
q′∈ΩT

ρ
(
S(q)−T (q′)

)
+ ∑

q∈ΩS
q′ 6∈ΩT

c2

6
. (6)

Solving (6) is difficult since two sums are mixed, with a
number of terms varying as a function of p since q′ =
W(q;p). First of all, we rewrite the fixed penalty term:

min
p ∑

q∈ΩS
q′∈ΩT

ρ
(
S(q)−T (q′)

)
+ ∑

q∈ΩS
q′ 6∈ΩT

ρ(x0), (7)

where x0 is any value saturating the M-estimator: ρ(x0) =
c2

6 . With the bisquare ρ-function, any value x0 such that
|x0| ≥ c is suitable (see equation (3)). Problem (7) can be
rewritten:

min
p ∑

q∈ΩS

ρ

(
[q′ ∈ΩT ]

(
S(q)−T (q′)

)
+[q′ 6∈ΩT ]x0

)
, (8)

where [ ] is the operator such that [a] = 1 if a is true and [a] =
0 otherwise. We rewrite (8) by introducing the image T∞:

T∞(q) =

{
T (q) if q ∈ΩT

α otherwise
and ΩT∞ = R2,

(9)
where α is any value such that ‖S(q)−α‖> x0. Finally, our
method is to solve:

min
p ∑

q∈ΩS

ρ
(
S(q)−T∞(q′)

)
. (10)

Problem (10) is solved with standard Iteratively Reweighed
Least-Squares.

M-estimator and overlap. An interesting property of our
approach is that it automatically discovers the overlap. For
instance, with Tukey’s bisquare M-estimator, a pixel q such
that

(∣∣ρ(S(q)− T∞(q′)
)
− c2

6

∣∣ ≤ ε
)

can be considered as
an outlier (with ε a small constant, e.g. 10−4). The over-
lap in the source image is the set of source pixels verifying
this condition. The overlap in the target image is the warped
source overlap. Recovered overlaps are illustrated in figure 1
and in §4.3.

4. Experimental Results

4.1. Deformation Models

Homographic warp. The homography warp WH is a
global deformation model that explains the relationship be-
tween two images taken by a camera that either rotates
around its optical centre or observes a planar scene. With p∈
R8 and q = (x,y), it is defined by:

WH(q;p) = 1
p7x+ p8y+1

(
p1x+ p2y+ p3
p4x+ p5y+ p6

)
.

Free-Form Deformation warp. The B-spline warp is a
particular type of Free-Form Deformations [RSH∗99]. It is
parametrized by a set of 2D control points pi j acting as
‘attractors’ for the deformation. The control points pi j ;
i ∈ {1, . . . ,nx}, j ∈ {1, . . . ,ny} are grouped in a vector p ∈
R2nxny . The analytical formWB of this warp is the 2D tensor
product of the 1D cubic B-spline:

WB(q;p) =
ny

∑
j=1

nx

∑
i=1

pi jNi(x)N j(y),

where Ni is the ith cubic B-spline basis function [dB01].

4.2. Synthetic Data

Data generation. We generated synthetic data in the fol-
lowing manner. First, a warp (homography or B-spline) is
determined by interpolating some randomly generated point
correspondences. The source image is obtained by unrav-
elling a texture image with the previously computed warp
and the texture image is used as the target image. The aver-
age distance between the point correspondences controls the
warp magnitude γ (in pixels). A proportion α of the source
and target images is then replaced with data from a differ-
ent image to simulate occlusions. Last, Gaussian noise with
standard deviation σ is added to the images. We used colour
images with intensities coded with real values between 0 and
1. The images are 320× 240 pixels wide. Figure 5 gives an
illustration of the generation process.

Experimental setup. The influence of several factors is
studied: the transformation magnitude γ, the amount of
noise σ and the proportion of erroneous data α. Each one
of these factors is studied independently with default values:
γ = 8 pixels, α = 10% and σ = 0.1 (10% of the maximal
pixel intensity value). Several algorithms are compared: rect-
angular ROI (RECT), the adaptive ROI of [PA04] (ADAP)
and our approach (MAXC). Different variants of the RECT

algorithm are considered: narrow (10%) and large (25%)
margins without M-estimator (RECTN, RECTL) and with
M-estimator (RECTNM, RECTLM). The reported results
are averages over 100 trials.

Optimization failures. As explained in §2.1, a ROI of fixed
size can lead to a failure of the optimization process. Fig-
ure 6 shows in which proportion such failures occur for the

c© 2010 The Author(s)
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(a)

(b)

(c)

Source imageSource image Target imageTarget image

Figure 5: Synthetic data generation. (a) Texture image and
deformation used to generate the source and the target im-
ages. (b) The warp is unravelled to generate the source im-
age. (c) Noise and outliers are added to the images.

experiments of the next 3 paragraphs and for the default val-
ues. Note that convergence towards a false solution (local
minimum) is not counted as a failure. We observe that there
are more failures with a wide rectangular ROI (RECTN) than
with a small one (RECTL). There are less failures with an M-
estimator (RECTNM, RECTLM) than without because the
steps of the optimization algorithms tend to be smaller. In
the sequel, when an algorithm fails to converge, the reported
measurements are from the last valid iteration.
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Figure 6: Failure rates. ADAP and MAXC never fail be-
cause they do not rely on a fixed ROI.

Number of iterations. Figure 7 shows the number of it-
erations. Overall, the convergence is faster with the homo-
graphic than with the B-spline warp. This comes from the
fact that the homographic warp is global. The apparent rapid-
ity of the algorithms relying on a rectangular ROI stems from
the fact that these algorithms can fail before convergence
when the given ROI is not valid. Our approach, MAXC is
generally better than ADAP which is the only other method
that does not require a ROI. However, MAXC takes more it-
erations to converge when the transformation magnitude is
large. This is explained by the fact that many pixels from the
source image, once transformed, do not belong to the tar-

get image domain. The convergence is slightly slowed down
since these pixels are penalized with our approach.

Geometric error. Figure 8 shows the geometric error, the
discrepancy in pixels between the estimated and the ground
truth transformations. We observe that the amount of noise
does not influence much the performance of the algorithms.
On the contrary, the geometric error is influenced by the
transformation magnitude and by the proportion of outliers.
This is especially true for the approaches that do not include
an M-estimator. Compared to the other methods, our ap-
proach is the one that gives the best results. We can see that,
with our approach, the geometric error is often less than one
pixel. This result is particularly important because it shows
that our approach is not biased by the penalty term used for
the pixels which are warped outside of the target domain.

Photometric error. The average photometric error obtained
after the last iteration of the studied algorithms is reported
in Figure 9. The smallest errors are always obtained with
our approach whatever the varying factor and the geometric
transformation are.

4.3. Real Data

Overlap. We consider a source and a target images of a pla-
nar scene taken from two different view points and with an
occlusion in the target image. Under these conditions, the
warp between the two images is a homography. Figure 10
shows the ROI used during the last iteration of four differ-
ent algorithms. This ROI is shown in both the source and
the target images. The difference image between the warped
target and the source images is also shown. It shows that
our approach, MAXC, is the only one to estimate the cor-
rect homography. The main point of figure 10 is that the fi-
nal ROI determined with MAXC corresponds exactly to the
true overlap between the images. The ROI used by ADAP at
convergence does not take into account the occluder. Conse-
quently, ADAP is not able to recover correctly the homogra-
phy. The ROI utilized by RECTLM does not contain enough
pixels making this approach unable to determine precisely
the homography. Finally, the algorithm RECTNM fails to
converge since its ROI contains pixels that do not belong
to the overlap (figure 10 shows the last valid iteration).

The widest panorama. We consider a video captured by a
camera that rotates around its optical centre with a uniform
movement from left to right. Consequently, the successive
images are linked with homographies. The goal of this ex-
periment is to build a panorama as wide as possible by tak-
ing the first image of the video and the furthest image for
which the registration is successful. As shown in figure 11,
the widest panoramas are obtained with ADAP and MAXC.
For this video, there are no occluders and, thus, the results of
ADAP and MAXC are similar. The algorithms RECTN and
RECTL get the smallest panoramas since the maximal dis-
placements are dictated by margin sizes.

c© 2010 The Author(s)
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Figure 7: Influence of several factors on the the number of iterations. The number of iterations done by the algorithms based
on a rectangular ROI is relatively low because these methods can stop prematurely (fail) as soon as the ROI is not valid.
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Figure 8: Influence of several factors on the geometric error. Our approach (MAXC) gives the best results. Globally, the
approaches relying on M-estimators are the best ones.
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RectGMRectGM AdapAdapRectPMRectPM MaxCMaxC

Figure 10: Examples of registration results for different algorithms. The first row corresponds to the source image, the second
row to the target image, and the last row to the difference between the source and the warped target image. The red pixels are
the pixels not included in the ROI during the last iteration of the algorithms. Note that the ROI computed by our approach
(MAXC) corresponds to the true overlap (taking into account both the field of view and the occluder). Our approach is the only
one that successfully registers this pair of images.

���

���

���

���

Figure 11: Panorama calculated with (a) RECTN, (b)
RECTL, (c) ADAP and (d) MAXC. The widest panoramas
are obtained with ADAP and our approach: MAXC.

Deformable mosaic. An example of deformable registra-
tion using our method is given in figure 12. This figure il-
lustrates that our approach automatically retrieves the true
overlap in both the source and the target images. Note that a
video corresponding to that example is provided as supple-
mental material.

Pattern tracking. Figure 13 illustrates the tracking of a pat-
tern in a video sequence. Three approaches are compared:
our approach, and two approaches using a fixed rectangular
ROI (defined with either a large margin or a narrow margin).
The object to track is a deforming banknote. We thus use
a FFD warp with 5× 5 control points. The pattern (i.e. the
source image) to track is defined as a part of the first image

(a) (b)

(c)

Figure 12: Example of deformable mosaic. (a): source im-
age ; (b): target image ; (c) mosaic. The red pixels in (a)
and (b) are the pixels that do not belong to the overlap de-
termined with our approach.

in the video sequence. The pattern is registered in each new
image (which plays the role of the target image) using as
an initial solution the registration determined for the previ-
ous image. Figure 13 shows that the approaches relying on
fixed ROI fail as soon as a part of the pattern is not visible
in the target image. Such problems cannot happen with our
approach. Figure 13 also illustrates that, with our approach,
the true overlap is correctly determined in both the source
(pattern) and the target images. The fourth and fifth columns
of figure 13 shows that our approach handles erroneous data
(occlusions and specularities) and the overlap in a unified
manner.
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Our approach
Overlap in the
source image

(pattern)

Overlap in the
target image

Rectangular RoI
Large margin

Rectangular RoI
Narrow margin

1 300 708 867 1096Image #

In the next image, there exists pixels in the RoI that,
once warped, do not belong anymore to the domain
of the target image (off-target pixels).

Occlusion Specularity

PatternPattern

PatternPattern

PatternPattern

Figure 13: Pattern tracking in a video sequence. Only a few frames of the video are shown here (the complete video is available
as supplemental material). For our method (first and second rows), we systematically show the pattern (i.e. the source image)
in order to illustrate the automatic discovery of the true overlap. For the methods that rely on a fixed rectangular ROI (third
and fourth rows), the pattern is shown only once since it does not vary with time. The approaches relying on a fixed ROI fails
prematurely because some pixels of the ROI are warped outside of the target image domain (frame #300 with a large margin
and #708 with a narrow margin). The frames #867 and #1096 shows how our approach handles occlusions and specularities.

5. Conclusion

We proposed a new approach to image registration that does
not need a ROI. It relies on a theoretical foundation stat-
ing that it is possible to consider the off-target pixels as out-
liers. This new point of view of direct image registration re-
sulted in a slight but elegant modification of the cost function
usually optimized. An interesting consequence of our ap-
proach is that the true overlap between the images is simply
the set of inlying pixels. Compared to previous approaches,
ours solves the problems related to the ROI and to the opti-
mization of the cost function. The efficiency of our approach
was illustrated with extensive experiments. In particular, we
showed that our approach was better than the previous meth-
ods in term of accuracy and robustness.
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