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Abstract
This paper deals with parametric image registration from point correspondences in deformable environments. In
this problem, it is essential to determine correct values for hyperparameters such as the number of control points
of the warp, a smoothing parameter weighting a term in the cost function, or an M-estimator threshold. This is
usually carried out either manually by a trial-and-error procedure or automatically by optimizing a criterion such
as the Cross-Validation score. In this paper, we propose a new criterion that makes use of all the available image
photometric information. We use the point correspondences as a training set to determine the warp parameters
and the photometric information as a test set to tune the hyperparameters. Our approach is fully robust in the
sense that it copes with both erroneous point correspondences and outliers in the images caused by, for instance,
occlusions or specularities.

Categories and Subject Descriptors (according to ACM CCS): I.4.3 [Computer Graphics]: Image Processing and
Computer Vision—Registration

1. Introduction

Parametric image registration is the problem of finding the
(natural) parameters of a warp such that it aligns a source im-
age to a target image. In addition to these natural parameters,
one also has to determine correct values for the problem hy-
perparameters in order to get a proper registration. The hy-
perparameters are either additional parameters of the warp
itself (warp hyperparameters) or parameters included in the
cost function to optimize (cost hyperparameters). As illus-
trated in figure 1, the hyperparameters greatly influence the
quality of the estimated warp. As reviewed in [Sze06], there
are two main approaches to image registration: the feature-
based and the pixel-based (or direct) approaches. They both
have their own drawbacks and advantages but neither of
them directly enables one to automatically tune the hyper-
parameters. In this paper, we propose a new method to auto-
matically set the hyperparameters by combining the advan-
tages of the feature-based and the pixel-based approaches.

As just said, some hyperparameters are linked to the
warp. Let W : R2 ×Rl → R2 be a warp. It is primarily
parametrized by a set of l parameters arranged in a vec-

tor s ∈Rl . The homography [HZ04,Sze06] is an example of
warp, often parametrized by the 8 independent coefficients
of the homography matrix. Another example of warp is the
Free-Form Deformation (FFD) [RSH∗99] parametrized by
l/2 two-dimensional control points. Examples of hyperpa-
rameters linked to the warps include, but are not limited to,
the number of control points of an FFD or the kernel band-
width of a Radial Basis Function [Boo89].

In the feature-based approach [Mod04,Sze06] the source
and the target images are ‘abstracted’ by a finite set of fea-
tures. In this paper, we consider point features only. The
points are then matched to build a set of point correspon-
dences {pi ↔ qi}n

i=1. The basic principle of the feature-
based approach is to minimize the error between the warped
points of the source image and their corresponding points
in the target image. To do so, a robust measure such as an
M-estimator can be used (more advanced methods can also
be used such as the one described in [PLF08]). Ancillary
constraints are often added [Mod04]. For instance, a term
promoting smooth warps is generally required to cope with
problems such as the lack of accuracy in the location of the
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Number of control points
Not having enough control points

leads in a warp which is not
flexible enough to model complex

deformations (top). On the contrary, a
warp with too much control points

is prone to overfit the data (bottom).

Smoothing parameter
A warp estimated with a smoothing
parameter too low overfits the data

and is sensitive to noise and 
outliers (top). On the contrary, a 

large smoothing parameter leads to 
an oversmoothed warp that does not
model well the deformations (bottom).

M-estimator scale parameter
With a small M-estimator scale 

parameter, the estimation process
tends to consider all the data points
as outliers: the smoothing term thus 
becomes predominant (top). On the 

contrary, a large scale parameter leads 
to a less robust estimation (bottom).

Correct hyperparameters
automatically estimated with

our new criterion

Source image
(and visualization grid)

Figure 1: Illustration of how some typical hyperparameters influence image registration. The contribution of this paper is a
method able to select the proper hyperparameters by combining the advantages of the feature-based and of the pixel-based
approaches to image registration. In this example, the data points were automatically detected and matched with SIFT [Low04,
VF08]. There was approximately 200 point correspondences (not shown in the figure) uniformly spread across the source image.
Among these points, around 10% were gross outliers.

points or a possible lack of data in some parts of the images.
All these elements result in the following minimization prob-
lem [Mod04, Bar08]:

min
s
E(s;θ), (1)

where θ is a vector containing the hyperparameters and E is
the cost function defined by:

E(s;θ) =
n

∑
i=1

ρ
(
W(pi;s)−qi;γ

)
+λR(s), (2)

with ρ an M-estimator, γ its scale parameter,R a smoothing
term (such as the classical bending energy term discussed
in §4) and λ a smoothing term controlling the trade-off be-
tween goodness-of-fit and smoothing. In equation (2), γ and
λ are two examples of cost hyperparameters. Note that other
hyperparameters can appear in the cost function if one de-
cides, for instance, to use more terms. The main advantages
of the feature-based approach to image registration are that
it copes with large deformations and it is efficient in terms
of computational complexity (this is particularly true when
using an efficient keypoint detector such as SIFT [Low04]
or SURF [BETG08] combined with a good matching algo-
rithm such as the improved nearest neighbour algorithm sug-
gested in [Low04] and implemented in [VF08]). However,
the feature-based approach by itself does not enable one to
determine correct hyperparameters. As it will be explained
in §2, it is not possible to determine proper values for the hy-
perparameters by including them directly in the optimization
problem (1), i.e. min

s,θ
E(s;θ).

The other approach to image registration is the direct ap-
proach [IA99, BM04]. In this case, the warp parameters are
estimated by minimizing the pixel-wise dissimilarities be-
tween the source image and the warped target image. The
main advantage of this approach is that the data used for the
parameter estimation is denser than with the feature-based
approach. As in the feature-based approach, it is not possible
to estimate the hyperparameters with the direct approach.

Since the hyperparameters cannot be trivially estimated,
they are often fixed once and for all according to some em-
pirical (and often unreliable) observations. It is also possi-
ble to choose them manually with some kind of trial-and-
error procedure. This technique is obviously not satisfac-
tory because of its lack of automatism and of foundations.
Several approaches have been proposed to tune the hyper-
parameters in an automatic way. None of them is specific to
image registration. They generally minimize a criterion that
depends on the hyperparameters and that assesses the ‘qual-
ity’ of the estimated parameters by measuring the ability of
the current estimate to generalize to new data. These ap-
proaches include, but are not limited to, Akaike Information
Criterion [CE02], Mallow’s CP [RS94], Minimum Descrip-
tion Length criterion, and the techniques relying on Cross-
Validation scores [Bar08,BPS∗03,WW75] (more details are
given in §2).

The common characteristic of the previous approaches
to automatically select the hyperparameters is that they are
problem generic and, as a consequence, they all rely on
the point correspondences only. In the particular context
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of image registration, another type of data is available: the
photometric information. We thus propose a new criterion,
named the photometric criterion, that uses the point corre-
spondences as a training set and the pixel colors as a test set.
Another way to put it is to say that our approach combines
the two classical approaches to image registration: roughly
speaking, the feature-based approach is used to estimate the
natural parameters while the pixel-based approach is used
for the hyperparameters. Our photometric criterion is more
flexible than the previous approaches in the sense that it
can handle simultaneously several hyperparameters of dif-
ferent types (for instance, discrete and continuous hyper-
parameters can be mixed together). Besides, our approach
is much more robust to erroneous data (noise and outliers)
than previous approaches based on Cross-Validation. Also,
it still works when there are only a few point correspon-
dences. Our new criterion is explained in §3 and its ability
to properly tune several hyperparameters simultaneously is
experimented in §4 with B-spline warps and the Cauchy M-
estimator.

Notation. Vectors are denoted using bold fonts (e.g. q), ma-
trices using sans-serif fonts (e.g. M) and scalars in italics
(e.g. x). The euclidean norm of a vector v is written ‖v‖. Im-
ages are denoted using calligraphic font (e.g. I) ; they are
considered as functions from R2 to Rc where c is the num-
ber of channels. Image evaluation at non-integer locations is
carried out using bilinear interpolation.

2. Previous Work on Hyperparameter Selection

2.1. Automatic Hyperparameter Estimation

We presented several hyperparameters in the introduction.
It is important to understand that inconsistent results would
arise if one tries to estimate the hyperparameters by includ-
ing them in the optimization problem (1). For instance, with
such an approach, the best way to minimize the contribution
of the regularization term would be to set λ = 0 which is ob-
viously not the desired value. All the same way, making the
M-estimator scale parameter γ tend to 0 would ‘artificially’
decrease the value of the cost function because it would be
equivalent to consider that almost all the point correspon-
dences are outliers (and the cost assigned to outliers tends to
zero when γ→ 0).

The classical approach to build an automatic procedure
for selecting the hyperparameters consists in designing a cri-
terion C that assesses the ‘quality’ of a given set of hyper-
parameters [Bar08, Wah90]. The minimizer of this criterion
should be the set of hyperparameters to use. The complete
problem thus consists in solving the following nested opti-
mization problem:

min
s
E(s; argmin

θ
C(θ)). (3)

Note that the introduction of the criterion C makes the prob-

lem (3) completely different from the inconsistent problem
min
s,θ
E(s;θ).

2.2. Cross-Validation

The Cross-Validation (hereinafter abbreviated CV) is a gen-
eral principle used to tune the hyperparameters in parame-
ter estimation problems [Wah90]. Broadly speaking, a CV
procedure consists in minimizing a score function that mea-
sures how well a set of estimated parameters will general-
ize to new data. This is achieved by dividing the whole data
set into several subsets. Each one of these subsets is then
alternatively used as a training set or as a test set to build
the CV score function. The use of CV to select the hyperpa-
rameters for spline parameter estimation has been introduced
in [WW75]. It has been successfully applied for deformable
warp estimation from point correspondences in [Bar08]. We
now present two variants of CV: the Ordinary CV and the
V -fold CV.

Ordinary CV (OCV). For a given set of hyperparame-
ters θ, let s(k)

θ
be the warp parameters estimated from the

data with the k-th point correspondence left out. The OCV
score, denoted COCV , is defined by:

COCV (θ) =
1
n

n

∑
k=1

∥∥∥qk−W
(

pk;s(k)
θ

)∥∥∥2
. (4)

Tuning the hyperparameters using the OCV consists in min-
imizing COCV with respect to θ. This approach has several
drawbacks. First, computing COCV is prohibitive: evaluat-
ing COCV for a single θ with formula (4) requires to estimate
each one of the n vectors {s(k)

θ
}n

k=1. There exists some close
approximations of (4) resulting in a significant improvement
in terms of computational time. However, these approxima-
tions are only usable in a least-squares framework for param-
eter estimation (see, for instance, [Bar08,FBM08]). Second,
the score COCV is not robust to false point correspondences.
And last, but not least, the OCV score is not reliable when
there are not enough point correspondences [Wah90].

V -Fold Cross-Validation (V -fold CV). An alternative to
the OCV score is the V -fold CV score. A complete review of
the V -fold CV is given in [BPS∗03]. It consists in splitting
the set of point correspondences into V disjoint sets of nearly
equal sizes (with V usually chosen as V = min(

√
n,10)). Let

s[v]
θ

be the warp parameters obtained from the data with the
v-th group left out and let mv be the number of point cor-
respondences in the v-th group. The V -fold CV score, de-
noted CV , is defined by:

CV (θ) =
V

∑
v=1

mv

n

mv

∑
k=1

1
mv

∥∥∥qk−W
(

pk;s[v]
θ

)∥∥∥2
. (5)

The V -fold CV is not robust to erroneous point correspon-
dences. It can be made robust by replacing the average
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∑
mv
k=1

1
mv

∥∥∥qk−W
(

pk;s[v]
θ

)∥∥∥2
in equation (5) with some ro-

bust measure such as the trimmed mean [BPS∗03]. Besides,
the V -fold CV score is not more reliable than the OCV score
when there are only a few point correspondences.

2.3. Other Approaches

Other approaches such as Akaike Information Criterion
(AIC), Bayesian Information Criterion (BIC), Mallow’s CP,
Minimum Description Length (MDL) have been used to tune
hyperparameters (see, for instance, [BPS∗03, CE02]). Some
robust versions also exist for these criteria ; for instance a
robust Mallow’s CP is developed in [RS94]. However, these
criteria have usually been developed to choose one model
among a finite set of given models and, as such, approaches
based on CV are better suited to tune continuous hyperpa-
rameters [Bar08].

3. Our Contribution: the Photometric Error Criterion

The common characteristic of the approaches reviewed in §2
is that both the parameters and the hyperparameters are es-
timated using exactly the same data set, i.e. the point corre-
spondences. In this section, we propose a new criterion to
tune hyperparameters that makes use of all the available in-
formation: not only the point correspondences but also the
photometric information.

The principle of our approach consists in combining the
two standard approaches to image registration:

• given a set of hyperparameters θ, the feature-based ap-
proach is used to determine the warp parameters sθ from
the point correspondences ;
• the cost function of the direct approach is used to assess

the correctness of the hyperparameters θ: the proper hy-
perparameters must be the ones minimizing the pixel-wise
photometric discrepancy between the target image and the
warped source image.

In other words, we propose to use the point correspondences
as the training set and the photometric information as the
test set. Dividing the data into a training set and a test set is
a classical approach of statistical learning [HTF03]. Given
a vector of hyperparameters θ and the corresponding warp
parameters sθ (estimated from the point correspondences),
our criterion, denoted C?, is defined as:

C?(θ) =
1
|R| ∑

p∈R

∥∥S(p)−T (W(p;sθ))
∥∥2
, (6)

where R is the region of interest and |R| its size. R can be
defined as, for instance, a rectangle obtained by cropping the
domain of the source image. S and T denote the source and
the target images respectively.

Note that the criterion of equation (6) is the cost func-
tion typically minimized in direct image registration [IA99,

Sze06]. The difference with direct image registration is that
the criterion is considered as a function of the hyperparame-
ters θ, not of the warp parameters s.

Robustness. When using photometric information, one
should take care of the fact that there can be outliers in the
image colors caused, for instance, by occlusions or specular-
ities. The criterion C? can be made robust to these outliers by
replacing the squared Euclidean norm in equation (6) with a
more robust measure such as the trimmed mean. We thus de-
fine the robust photometric error criterion, denoted C′?, as:

C′?(θ) =
1

100−α

100 |R|
∑

p∈Rα

∥∥S(p)−T (W(p;sθ))
∥∥2
, (7)

where Rα is the subset of R obtained by removing from R
the α% of the pixels that produce the highest values for
‖S(p)−T (W(p;sθ))‖2.

4. Experimental Results

4.1. Technical Details

In this section, we instantiate our general contribution in or-
der to conduct some experiments.

Warp. The warp we use is the Free-Form Deformation
model relying on tensor-product B-Splines, as in [RSH∗99].
This warp is parameterized by a set of l/2 two-dimensional
control points si j; i ∈ {1, . . . , lx}, j ∈ {1, . . . , ly} with lxly =
l/2. They are arranged in a vector s ∈ Rl . For a point
p = (x,y), the FFD warp is defined by:

W(p;s) =
lx

∑
i=1

ly

∑
j=1

si jNi(x)N j(y). (8)

The values lx and ly are two hyperparameters determining
the number of control points along the x-axis and the y-
axis respectively. The functions Ni are the B-spline basis
functions [Die93, RSH∗99, dB01] which are polynomials of
degree 3. If point p is fixed and known then the warped
point W(p;s) is expressed as a linear combination of the
control points si j, and hence can be written in the form
W(p;s) = wT

p S, where wp ∈ Rl is a vector depending only
on the point p and S ∈ Rl/2×2 is the matrix obtained by
stacking the control points si j (S is a rearrangement of s).

Smoothing Term. In our experiments, the smoothing
term R in equation (1) is replaced by the classical bending
energy:

R(s) =
2

∑
i=1

∫
Ω

∥∥∥∥∂
2W i

∂p2 (p;s)
∥∥∥∥2

F
dp, (9)

where Ω is the domain on which the warpW is defined,W i

is the i-th coordinate of the warp, and ‖ · ‖F is the Frobe-
nius norm of the Hessian matrix. With FFD, there exists
a closed-form expression for the bending energy: R(s) =
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sTBs, where B ∈ Rl×l is a symmetric, positive, and semi-
definite matrix which can be easily computed from the sec-
ond derivatives of the B-spline basis functions.

M-estimator. In this section we use the Cauchy M-
estimator defined by the following ρ function:

ρ(x;γ) = log

(
1+

x2

γ2

)
, (10)

where γ ∈ R∗+ is an hyperparameter that controls the scale
of this M-estimator. It can easily be shown that the Cauchy
M-estimator is the negative likelihood with errors following
a Cauchy/Lorentz distribution. The inaccuracies of the key-
points’ locations detected by SURF and SIFT tend to follow
such a distribution. Besides, the probability density function
(PDF) of the Cauchy distribution has heavy tails that satis-
factorily models the outliers, i.e. the false point correspon-
dences. We report in figure 2 an illustrative test showing that
assuming a Cauchy distribution is consistent with the kind
of errors encountered in real cases. In this experiment, we
use the source and the target images of figure 1 for which
the ground truth warp is known (manually determined). Fig-
ure 2 depicts an histogram of the errors between the loca-
tion of the 1112 keypoints detected with SIFT in the target
image and their expected location (computed by applying
the ground truth warp to the keypoints in the source image).
It shows that considering a Cauchy distribution is a reason-
able choice. In particular, the fact that the tails of the PDF

of the Cauchy distribution are heavier than the ones of, for
instance, the Gaussian PDF makes the cost function of equa-
tion (1) robust to outliers.

-1550 -10 0 10 1550
0

0.3

-5 5

Cauchy probability
distribution function 

Error histogram
(normalized)

errors (pixels)

Figure 2: Graphical comparison between the probability
density function of the Cauchy distribution and the (normal-
ized) histogram of the errors between the expected keypoints
in the target image and the keypoints automatically detected
with SIFT. Mind the scale of the abscissa axis.

Optimization of the Criteria. All the criteria used in the
experiment (including the CV criteria and our new criterion)
are minimized using an exhaustive search approach. It con-
sists in evaluating the criteria over a fine grid in order to find
the optimum. Although long to compute, this approach has
the advantage of being reliable. Besides, we generally op-
timize over only 2 or 3 hyperparameters, which makes the
computational time reasonable.

4.2. Synthetic Data

In this subsection, several experiments are done on synthetic
data. Using such data is interesting since it allows us to know
precisely the ground truth warp that relates the source and
the target images.

Synthetic Data Generation. A pair of images is generated
from a texture image (randomly chosen in a stock of 15
different images). A rectangular part of the texture image
is used as the source image. The target image is build by
deforming another part of the texture image with a ground
truth warp W?, as illustrated in figure 3. The warp W? is
a B-spline with 5× 5 control points determined randomly
and such that the average deformation magnitude is approx-
imately 20 pixels. The sizes of the source and of the target
images are 160× 160 pixels and 320× 240 pixels respec-
tively. A Gaussian noise with standard deviation equal to 5%
of the maximal intensity value is added to the pixels of both
the source and the target images. A set P = {pi ↔ qi}n

i=1
of point correspondences is built by randomly picking the
points pi in the source image and computing their correspon-
dents qi in the target image with the warp W?. A Cauchy
noise with scale parameter γ = 1 pixel is added to the point
correspondences.

Source image
(pattern)

Target image Texture imageTexture image

Figure 3: Synthetic data generation process.

Oracle. We call oracle the warp estimated from the point
correspondences P which is as close as possible to the
ground truth warp W?. It is designed to be the best possi-
ble warp given i) the available data and ii) the warp model.
It is preferable to use the oracle instead of the ground truth
warp to evaluate an estimated warp. Indeed, en error between
an estimated warp and the ground truth warp does not nec-
essarily comes from a bad estimation process (which is the
object of our experiments in this paper): it can comes from
the fact that the considered warp model is simply not able
to fit the ground truth warp (for example, even if the cor-
rect hyperparameters are given, a homography will never fit
a highly deformed warp). The oracle is defined as the warp
induced by the parameters and the hyperparameters (so,θo)
estimated by solving the following problem:

(so,θo) = argmin
(s,θ)

∫∫
p∈ΩW?

‖W?(p)−W(p;s)‖ dp. (11)

c© 2010 The Author(s)
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Problem (11) is numerically solved using an exhaustive
search approach.

4.2.1. Relative Geometric Error (RGE)

The RGE measures the discrepancy between an estimated
warp and the oracle. Let θ• be the set of hyperparameters
that minimizes the criterion C• (the symbol • is a place-
holder for the criterion name). Let s• be the warp parameters
estimated from the point correspondences with the hyperpa-
rameters θ•. The RGE is defined as:∫∫

p∈ΩS

‖W(p;so)−W(p;s•)‖
‖W(p;so)‖

dp. (12)

Figure 4 compares the RGE obtained by tuning the M-
estimator scale parameter γ and the smoothing parameter λ

with different approaches:

• our photometric criterion (Photo) and its robust versions
with thresholds for the trimmed mean of 25% (PhotoR25)
and 50% (PhotoR50) ;
• the V -fold CV criterion (VFold) and its robust versions

with thresholds for the trimmed mean of 20% (VFoldR20)
and 40% (VFoldR40).

The number of control points of the warp is set to 8× 8.
100 point correspondences are used to estimate the warp.
The results reported in figure 4 are averaged over 100 tri-
als (with different texture images, different point correspon-
dences, and different deformations).

We can observe in figure 4 that the smallest RGE are con-
sistently obtained with our photometric criterion. The differ-
ence between robust and non-robust versions of our criterion
is not as significant as for the CV criteria. This comes from
the fact that in the synthetic data used for this experiment,
there are outliers in the point correspondences (thus affect-
ing the non-robust CV scores) while the source and the target
images are outlier-free.

4.2.2. Scale Parameter of the Cauchy’s M-estimator

Figure 5 shows the values determined with several criteria
for the Cauchy’s M-estimator scale parameter γ. In addition
to the criteria used in the previous experiment, we also show
the results obtained with the oracle. The data used in this
experiment are the same than the one used in the previous
experiment. The point correspondences were generated with
errors following a Cauchy distribution with scale parame-
ter equals to 1. As a consequence, the criteria are expected
to give the value 1 for the scale parameter of the Cauchy’s
M-estimator. Figure 5 shows that the proposed photometric
criteria results in values for γ which are close to 1. We ob-
serve that the three approaches based on the basic V -fold
CV also results in correct values. On the contrary, the robust
variants of the V -fold CV gives values farther away from 1
than the other approaches. The fact that the value 1 is not ex-
actly retrieved with our criteria is not really significant since
this value is not precisely retrieved with the oracle itself.
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VFoldR40
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Figure 4: Relative geometric errors for several criteria
used to determine hyperparameters. Globally, the criteria
we propose (Photo, PhotoR25, and PhotoR50) give better
results than the ones obtained with criteria relying on Cross-
Validation (VFold, VFoldR20, and VFoldR40). The red line
is the median over the 100 trials. The limits of the blue box
are the 25th and the 75th percentiles. The black ‘whiskers’
cover approximately 99.3% of the experiment outcomes. The
red crosses are the outcomes considered as outliers.

Oracle
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Figure 5: Scale parameter of the Cauchy’s M-estimator re-
trieved using several criteria. The pink dashed line repre-
sents the expected value for this hyperparameter. The green
dashed line represents the value retrieved using the oracle.
The use of the criteria we proposed (Photo, PhotoR25, and
PhotoR50) results in values close to the expected ones.

4.2.3. Noise in the Point Correspondences

In this experiment, we study the influence of the noise in
the point correspondences. We use the same data than in
the experiments of §4.2.1 except that there are no outliers
in the images. The point correspondences are perturbed us-
ing an additive Gaussian noise of standard deviation σ vary-
ing between 0 and 12 pixels. Therefore, we only test the
non-robust methods: VFold and Photo. These methods are
used to automatically tune the regularization parameter. Fig-
ure 6 shows the evolution of the RGE in function of the
amount of noise in the point correspondences. It shows that
our approach Photo is much more robust to the noise than
VFold. This comes from the fact that VFold entirely relies
on the noisy point correspondences while our approach also
includes color information.
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Figure 6: Evolution of the relative geometric error in func-
tion of the (Gaussian) noise in the point correspondences.
Our approach, Photo, is more robust than the approach re-
lying on the CV (VFold).

4.3. Real Data

The last experiments of this paper are conducted on real data.
The source images are digital pictures. The target images
are obtained by first printing the source images and sec-
ond picturing them with a standard camera. Ground truth
warps were determined manually by clicking several hun-
dreds of point correspondences in the images. Note that fig-
ure 1 shows an example of our approach applied to real data.

4.3.1. The cubist image

Figure 7 shows the registration results obtained by automat-
ically determining the hyperparameters with several criteria.
In this experiment, three hyperparameters were considered:
the smoothing parameter λ, the M-estimator threshold γ, and
the number of control points of the B-spline warp lx (the
number of control points along the x-axis and the y-axis
were set to be equal). 314 point correspondences were au-
tomatically determined using the SIFT detector and the de-
scriptor matcher implemented in [VF08]. Approximately 8%
of the point correspondences were false matches. We can
observe in figure 7 that our photometric criterion is the one
giving the best results. The standard V-Fold CV criterion is
the one leading to the worst results due to the presence of
erroneous point correspondences. The robust V-Fold CV cri-
terion performs better than the non-robust one but is not as
good as ours, particularly for the bottom right corner of the
image: this is due to a lack of point correspondences in this
part of the image.

We report in table 1 the RGE as defined in §4.2.1 for the
warps estimated in the ‘cubist image’ experiment.

Criterion RGE
V-Fold CV 1.852%
V-Fold CV (robust) 0.675%
Our criterion 0.190%
Our criterion (robust variant) 0.197%

Table 1: RGE for the experiment of figure 7.

(a) Source image (b) Point correspondences

(c) Ground truth warp (d) Oracle

(e) VFold CV (f) VFold CV (threshold = 20%)

(g) Our criterion (h) Our criterion (threshold = 25%)

Figure 7: Image registered with 3 hyperparameters (γ, λ,
and l) automatically determined with several criteria. The
point correspondences were obtained with SIFT. The thresh-
olds indicated in (f) and (h) are the thresholds of the trimmed
means (see §2.2 and §3). In this case, the two variants of our
criterion are the ones that lead to the best results.

4.3.2. ‘Waterfall’ of Maurits Escher

Figure 8 shows an experiment similar to the one conducted
with the ‘cubist image’. Nonetheless, there are some impor-
tant differences. This time, the keypoints were extracted us-
ing the SURF detector of [BETG08] and approximately 12%
of the 621 point correspondences were erroneous. An artifi-
cial occlusion was added to the target image; we used an
artificial occlusion in order to still be able to determine the
ground truth warp (which is done before the insertion of the
occlusion). Besides, the M-estimator scale parameter and the
smoothing parameter were the only hyperparameters under
study (the number of control points of the warp was set to the
one of the ground truth warp). As in the ‘cubist image’ case,
the hyperparameters chosen with our photometric criterion
are better than the ones estimated with the criterion relying
on the V-Fold Cross-Validation. In both cases, the robust ver-
sions of the criteria perform better than the non-robust ones.
Note that the occlusion added to the target image influences
the non-robust V-fold CV criterion since it introduces sup-
plementary false point correspondences.

5. Conclusion

We proposed a new criterion to automatically tune the hy-
perparameters in image registration problems. We showed

c© 2010 The Author(s)
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(b) Ground truth warp (c) Oracle

(d) VFold CV (e) VFold CV (threshold = 20%)

(f) Our criterion (g) Our criterion (threshold = 25%)

(a) Point correspondences

Figure 8: Image registered with 2 hyperparameters (γ, λ)
automatically determined with several criteria. The point
correspondences were obtained with SURF. The thresholds
indicated in (f) and (h) are the thresholds of the trimmed
means (see §2.2 and §3). Globally, the robust variants of
the VFold CV criterion and of our criterion lead to accept-
able results. The non-robust VFold CV criterion is greatly
influenced by the presence of outliers in the point correspon-
dences. The non-robust variant of our criterion is slightly
more influenced by the occlusion than the robust variant.

that our photometric criterion performs generally better than
other approaches with similar goals such as the Cross-
Validation criteria. This was made possible by designing a
criterion specifically adapted to the image registration prob-
lem that combines the advantages of both the feature-based
and the pixel-based approaches to image registration. Our
criterion was successfully experimented in a particular but
challenging setup: deformable B-spline warps, selection of
an M-estimator threshold, presence of outliers and occlu-
sions, etc. However, the proposed criterion is not limited to
this setup: it is generic enough to be applied in other im-
age registration problems with different constraints, differ-
ent warps, and, thus, different hyperparameters.
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