
THESIS

Presented at

Université d’Auvergne

For the degree of

Doctor of the Université d’Auvergne

Speciality

Computer Vision

Defended by

Florent BRUNET

on 2010, November 30

Title

Contributions to Parametric Image
Registration and 3D Surface

Reconstruction

Jury

President Laurent Sarry

Co-Directors Adrien Bartoli

Rémy Malgouyres

Nassir Navab

Reviewers Lourdes Agapito

Joachim Hornegger

Étienne Mémin

2

3

Abstract

This thesis deals with the modelling and the estimation of parametric functions in Computer Vision. It focuses

on three main topics: range surface fitting, image registration, and 3D reconstruction of smooth surfaces. In

addition to these three main topics, we consider other transversal elements. In particular, we focus on the

general problem caused by the hyperparameters in parametric model estimation, which includes regularization

problems. All these topics are related by a single objective which is nowadays one of the most important goals

in Computer Vision: the reconstruction of an arbitrary surface from images taken in an arbitrarily deforming

environment. This thesis can be divided into four main parts.

The first part deals with the basics. It includes background on optimization and on parameter estimation.

The problems related to the hyperparameters are also explained and illustrated. The rest of the thesis is centred

on our original contributions.

The second part of this thesis deals with the problem of fitting a surface to range data. This problem consists

in finding a parametric smooth surface that approximates accurately a sparse set of 3D points. We consider two

main problems. First, we propose methods to automatically tune the hyperparameters such as a regularization

weight. Second, we show how heteroskedastic noise may be handled. Heteroskedastic noise is an important

problem since it is typical of range sensors, for instance Time-of-Flight cameras.

The third part of this thesis is dedicated to the problem of image registration. We propose three contributions

in this topic. First, we present a new warp (image deformation function) able to correctly model the effect of

perspective projection. Second, we show how to solve an important problem that typically happens in direct

image registration: the problem of the region of interest. Third, we propose a new framework to estimate in

a reliable way the hyperparameters needed in feature-based image registration (threshold of an M-estimator,

regularization weight, number of control points, etc).

The last part of this thesis deals with the problem of reconstructing an inextensible surface from a monocular

sequence of images. We also use the hypothesis that a reference shape is known. Using only the motion cue,

the problem is ill-posed but, nonetheless, satisfying and plausible results can be obtained. We propose two new

formulations to reconstruct the surface: the first one reconstruct a sparse set of points using a second order

cone program, and the second one reconstruct a smooth parametric surface using a least-squares minimization

problem.

Résumé

Cette thèse traite de la modélisation et de l’estimation de fonctions paramétriques en vison par ordinateur. Notre

travail se concentre sur trois axes principaux : l’ajustement de surfaces sur données de profondeur, le recalage

d’images et la reconstruction de surfaces tridimensionnelles à partir d’images. En outre, nous abordons des

sujets transversaux. En particulier, nous nous intéressons aux problèmes posés par les hyperparamètres (ce

qui inclue les problèmes de régularisation). Tous ces aspects convergent vers un seul et unique but ultime :

la reconstruction de surface quelconques à partir d’images prises en environnements déformables. Cette thèse

peut être divisées en quatre parties.

La première partie traite des éléments fondamentaux comme les conventions et les notations. Les bases

de l’optimisation et de l’estimation des problèmes paramétriques sont aussi expliquées. La notion d’hyperpa-

ramètre est expliquée et illustrée. Le reste de ce document est axé sur nos contributions originales.

La deuxième partie de cette thèse traite du problème de l’ajustement de surface sur des données de pro-

fondeur. Ce problème consiste à déterminer une surface paramétrique qui approxime de manière fidèle un

4

ensemble discret de points tridimensionnels. Nous étudions deux sous-problèmes. En premier lieu, nous pro-

posons une méthode permettant de choisir automatiquement les hyperparamètres contrôlant l’importance de la

régularisation. En second lieu, nous montrons comment un bruit hétéroskédastique peut être géré.

La troisième partie de cette thèse est dédiée au recalage d’images. Nous proposons trois contributions dans

ce domaine. Premièrement, nous présentons un nouveau modèle paramétrique permettant de prendre en compte

les effets d’une caméra perspective. Deuxièmement, nous montrons comment résoudre un problème important

du recalage d’images par approche directe : le problème de la région d’intérêt. Troisièmement, nous propo-

sons un nouveau cadre générique pour l’estimation automatique des hyperparamètres nécessaires au recalage

d’images par approche basée primitive (ce qui inclut les seuils de M-estimateurs, le poids de la régularisation

ou le nombre de points de contrôles d’un modèle de déformation).

Enfin, la quatrième partie de cette thèse se concentre sur le problème de la reconstruction d’une surface à

partir d’une séquence monoculaire d’images. Nous faisons l’hypothèse que la surface à reconstruire est inexten-

sible et qu’une forme de référence est disponible. Si l’on n’utilise que l’information produite par le déplacement

de la surface, ce problème est mal posé. Néanmoins, des résultats satisfaisants et plausibles peuvent être atteints.

Nous proposons deux nouvelles formulations permettant de reconstruire la surface : la première reconstruit un

ensemble discret de points 3D par programmation conique du second ordre (second order cone programming) ;

la seconde reconstruit une surface paramétrique lisse en utilisant une minimisation de moindres carrés.

CONTENTS 5

Contents

1 Introduction 17

2 General Tools 23

2.1 Notation, First Definitions . 24

2.1.1 Basic Notations . 24

2.1.2 Functions . 24

2.1.3 Sets and Collections . 25

2.1.4 Matrices and Vectors . 25

2.1.5 Other Common Notation . 27

2.2 Basics on Continuous Optimization . 27

2.2.1 Generalities on Optimization . 28

2.2.2 Optimization Algorithms . 29

2.2.2.1 Iterative Optimization Algorithms . 30

2.2.2.2 Downhill Simplex . 30

2.2.2.3 Gradient descent . 32

2.2.2.4 Newton’s Method . 35

2.2.2.5 Gauss-Newton Algorithm . 37

2.2.2.6 The Normal Equations . 38

2.2.2.7 Levenberg-Marquardt . 39

2.2.2.8 Cholesky Factorization . 40

2.2.2.9 QR Factorization . 42

2.2.2.10 Singular Value Decomposition . 42

2.2.2.11 Iteratively Reweighed Least Squares . 44

2.2.2.12 Golden Section Search . 44

2.3 Parametric Models of Function . 45

2.3.1 Splines . 45

2.3.2 The B-spline Representation . 47

2.3.2.1 The B-Splines Functions . 48

2.3.2.2 Splines as Linear Combinations of B-Splines 49

2.3.2.3 Uniform Cubic B-Splines . 52

2.3.2.4 Natural Splines . 55

2.3.2.5 B-Splines in Higher Dimensions . 56

2.3.3 Non Uniform Rational B-Splines (NURBS) . 59

6 CONTENTS

2.3.3.1 Basics on NURBS . 60

2.3.3.2 Properties . 62

2.3.4 Radial Basis Functions . 65

2.3.4.1 Generalities . 65

2.3.4.2 Basis Functions . 66

3 General Points on Parameter and Hyperparameter Estimation 69

3.1 Parameter Estimation . 70

3.1.1 General Points on Parameter Estimation . 70

3.1.1.1 Parametric Models of Function . 70

3.1.1.2 Data Measurements, Errors . 70

3.1.1.3 Probability Density Function (PDF) . 71

3.1.1.4 Maximum Likelihood Estimation . 71

3.1.1.5 Maximum A Posteriori Estimation . 72

3.1.1.6 Estimator . 72

3.1.2 Specific Techniques in Parameter Estimation . 73

3.1.2.1 Normal Distribution and Least-Squares . 73

3.1.2.2 Heavy-tailed Distributions and M-estimators 75

3.1.2.3 Other robust estimators . 78

3.2 Hyperparameters . 80

3.2.1 Generalities . 81

3.2.1.1 A Practical Example . 81

3.2.1.2 Formal Definitions . 82

3.2.2 Automatic Computation of the Hyperparameters . 86

3.2.2.1 General Principle . 86

3.2.2.2 Cross-Validation . 86

3.2.2.3 Mallow’s CP . 89

3.2.2.4 Akaike Information Criterion . 89

3.2.2.5 Bayesian Information Criterion . 91

3.2.2.6 Minimum Description Length . 91

3.2.2.7 Other Approaches . 92

4 Range Surface Fitting 95

4.1 First Definitions and Concepts . 96

4.1.1 First Definitions . 96

4.1.2 Acquisition of Range Data . 97

4.1.2.1 Generalities . 97

4.1.2.2 Passive Sensors . 97

4.1.2.3 Active Sensors . 99

4.1.3 An Introductory Example . 102

4.2 The L-Tangent Norm . 105

4.2.1 Supplementary Details on Range Surface Fitting . 105

4.2.1.1 Generalities . 105

4.2.1.2 The Bending Matrix . 107

4.2.2 The L-Curve Criterion . 112

CONTENTS 7

4.2.3 The L-Tangent Norm Criterion . 113

4.2.3.1 The Proposed Criterion . 115

4.2.3.2 Properties of the L-Tangent Norm . 115

4.2.4 Experimental Results . 116

4.2.4.1 Data . 116

4.2.4.2 Computation Timings . 117

4.2.4.3 Is the L-Tangent Norm an Approximation of Cross-Validation? 120

4.2.4.4 Reconstructed Surfaces . 120

4.3 Range Surface Fitting with Heteroskedastic Noise . 122

4.3.1 Fitting a B-spline on Mesh Data . 122

4.3.1.1 Properties of the Kronecker Product . 122

4.3.1.2 Mesh Data . 123

4.3.1.3 Fitting a B-spline to Mesh Data . 123

4.3.1.4 Choice of the Regularization Parameter . 125

4.3.1.5 The FGA Algorithm . 126

4.3.2 Our Approach to Handle Heteroskedastic Noise and Discontinuities 126

4.3.2.1 Segmentation . 127

4.3.2.2 Bounding Boxes . 128

4.3.2.3 Local Depth Maps . 129

4.3.2.4 Local Fittings . 129

4.3.2.5 Merging . 130

4.3.3 Experiments . 130

4.3.3.1 Standard Deviation Estimator . 130

4.3.3.2 Grid Approach . 131

4.3.3.3 Qualitative Results . 131

4.3.3.4 Quantitative Results . 131

5 Image Registration 135

5.1 General Points on Image Registration . 136

5.1.1 Background . 136

5.1.2 Problem Statement . 139

5.1.2.1 Image Registration as an Optimization Problem 139

5.1.2.2 Direct Methods . 141

5.1.2.3 Feature-Based Approach . 142

5.2 Direct Image Registration without Region of Interest . 143

5.2.1 Introduction . 144

5.2.2 Region of Interest: State of the Art . 145

5.2.2.1 Rectangular Region of Interest . 145

5.2.2.2 Adaptive Region of Interest . 146

5.2.3 Direct Image Registration without Region of Interest 146

5.2.4 Experimental Results . 148

5.2.4.1 Synthetic Data . 148

5.2.4.2 Real Data . 150

5.2.5 Conclusion . 153

8 CONTENTS

5.3 Pixel-Based Hyperparameter Selection for Feature-Based Image Registration 153

5.3.1 Introduction . 153

5.3.2 Reminder and Complementary Elements on Automatic Hyperparameter Selection . . . 156

5.3.2.1 Cross-Validation . 156

5.3.2.2 Other Approaches . 157

5.3.3 Our Contribution: the Photometric Error Criterion 157

5.3.4 Experimental Results . 158

5.3.4.1 Technical Details . 158

5.3.4.2 Synthetic Data . 159

5.3.4.3 Relative Geometric Error (RGE) . 160

5.3.4.4 Scale Parameter of the Cauchy’s M-estimator 161

5.3.4.5 Noise in the Point Correspondences . 161

5.3.4.6 Real Data . 162

5.3.5 Conclusion . 164

6 NURBS Warps 167

6.1 Introduction . 168

6.2 Affine Interpretation of the BS-Warps . 168

6.3 NURBS-Warps . 170

6.4 Parameter Estimation . 171

6.4.1 The BS-Warp . 171

6.4.2 The NURBS-Warp . 171

6.5 Experiments . 172

6.5.1 Simulated Data . 172

6.5.2 Real Images . 175

6.6 Conclusion . 175

7 Monocular Reconstruction of Inextensible Surfaces 177

7.1 Introduction . 178

7.2 Related Work on Inextensible Surface Reconstruction . 179

7.3 Convex Formulation of the Upper Bound Approach with Noise in all Images 180

7.3.1 Noise in the Template Only . 180

7.3.2 Noise in Both the Template and the Input Images . 181

7.4 Smooth and Inextensible Surface Reconstruction . 181

7.4.1 Parametric Surface Model . 182

7.4.2 Surface Reconstruction as a Least-Squares Problem 182

7.4.2.1 Initial solution. 184

7.5 Experimental Results . 184

7.5.1 Experiments on Synthetic Data . 184

7.5.1.1 Reconstruction Errors . 185

7.5.1.2 Length of Geodesics . 186

7.5.1.3 Gaussian curvature . 186

7.5.2 Experiments on Real Data . 187

7.6 Conclusion . 188

CONTENTS 9

8 Conclusion 189

A Feature-Driven Direct Non-Rigid Image Registration 193

A.1 Introduction . 194

A.2 Problem Statement and Previous Work . 196

A.2.1 Forward Additive Algorithms . 196

A.2.2 Inverse Compositional Algorithms . 197

A.3 Feature-Driven Registration . 198

A.3.1 Feature-Driven Warp Parameterization . 198

A.3.2 Threading Warps . 199

A.3.3 Reverting Warps . 200

A.3.4 Compositional Feature-Driven Registration . 201

A.4 Local Registration Algorithms . 201

A.4.1 Local Registration with Gauss-Newton . 202

A.4.2 Learning-Based Local Registration . 202

A.5 Feature-Driven Warps . 205

A.5.1 The Feature-Driven Thin-Plate Spline Warp . 205

A.5.1.1 Definition . 205

A.5.1.2 Feature-Driven Parameterization . 206

A.5.2 The Feature-Driven Free-Form Deformation . 207

A.5.2.1 Definition . 207

A.5.2.2 Feature-Driven Parameterization . 208

A.5.2.3 Extrapolation . 209

A.6 Experimental Results . 210

A.6.1 Representational Similarity of the TPS and FFD Warps 210

A.6.2 Comparison of Registration Algorithms . 214

A.6.2.1 Simulated Data . 214

A.6.2.2 Real Data . 216

A.7 Conclusions . 219

A.7.1 Framework . 219

A.7.2 Experimental Results . 221

10 CONTENTS

LIST OF FIGURES 11

List of Figures

2.1 The downhill-simplex method. 32

2.2 Contour plot of the Rosenbrock banana function. 32

2.3 Illustration of the downhill simplex method. 33

2.4 Illustration of the gradient descent method. 34

2.5 Illustration of Newton’s method. 36

2.6 Illustration of the Gauss-Newton method. 38

2.7 Graphical interpretation of the normal equations. 39

2.8 Illustration of the Levenberg-Marquardt method. 40

2.9 Illustration of the golden section search algorithm. 44

2.10 An historical spline. 45

2.11 Examples of spline functions. 46

2.12 Influence of coincident knots on a B-spline basis function. 49

2.13 Some interesting properties of the B-splines. 51

2.14 A possible graphical representation of B-spline weights. 52

2.15 B-spline with coincident boundary knots. 53

2.16 Basis functions of uniform cubic B-splines. 53

2.17 Anatomy of a B-spline basis function of UCBS. 55

2.18 A vector-valued B-splines. 56

2.19 Construction of a bivariate B-spline basis function. 57

2.20 Bivariate B-spline built using the tensor product. 58

2.21 A 3-vector-valued tensor-product B-spline. 59

2.22 Basis functions of tensor product B-spline. 59

2.23 Influence of the weights of a NURBS. 61

2.24 NURBS and perspective projection. 62

2.25 Rational basis functions and partition of unity. 62

2.26 Continuity conditions with a NURBS of degree 3. 63

2.27 Exact representation of a circle with a NURBS of degree 2. 64

2.28 Some classical radial basis functions. 67

3.1 Probability density function of the normal distribution. 74

3.2 Having values that deviate significantly from the mean of a normal distribution is extremely

unlikely. 75

3.3 Some common M-estimators. 79

12 LIST OF FIGURES

3.4 Noisy data to fit with a polynomial. 81

3.5 Fitted polynomials for different hyperparameters. 83

3.6 Illustration of the main concepts related to data fitting and hyperparameters. 85

4.1 An example of range surface. 96

4.2 An example of range data points. 96

4.3 Illustration of Shape-from-Stereo. 98

4.4 Illustration of Shape-from-Shading. 98

4.5 Illustration of Shape-from-Texture. 99

4.6 Basic principles of 3D reconstruction using structured light. 100

4.7 Basic principle of LADAR. 100

4.8 Basic principle of ToF cameras. 101

4.9 Example of range data representing Puy Pariou. 102

4.10 Ordinary cross-validation score function. 104

4.11 Final results for our example of range surface fitting. 105

4.12 Sparsity structure of the bending matrix of bi-variate B-splines. 112

4.13 An example of L-curve that has the typical shape of the letter L. 114

4.14 An example of pathological case for the L-curve criterion. 114

4.15 Example of the L-Tangent Norm criterion. 116

4.16 An example of the LTN criterion presenting two meaningful minima. 117

4.17 Examples of randomly generated surfaces. 118

4.18 Real range data used in the experiments. 118

4.19 Timings for computing the criteria. 119

4.20 Computation time needed to optimize the L-tangent norm and the cross-validation. 119

4.21 Computation time needed to reconstruct the whole surfaces. 119

4.22 Comparison of the regularization parameters obtained with the LTN and with the ones obtained

with cross-validation. 120

4.23 Integral relative errors for 200 randomly generated surfaces. 121

4.24 Relative error maps for the surfaces reconstructed using the LTN criterion. 121

4.25 Illustration of our algorithm to fit a B-spline to range data with discontinuities and heteroskedas-

tic noise. 127

4.26 Illustration of the performance gain obtained when using a grid approach. 131

4.27 Example of surface fitted on range data with heteroskedastic noise. 132

4.28 Discrepancy between ground truth range images and the ones predicted with the fitted surface

using our algorithm. 133

5.1 General principle of image registration. 136

5.2 Illustration of the inverse and forward warping. 138

5.3 Principle of the SSD term for direct image registration. 140

5.4 Introductory example of the proposed approach to direct image registration. 144

5.5 Profile of the cost functions of the adaptive ROI approach. 145

5.6 Profile of the data term for rectangular ROI with margins of various sizes. 146

5.7 Pixels out of the field of view can be considered as usual outliers. 147

5.8 Synthetic data generation. 149

5.9 Failure rates. 149

LIST OF FIGURES 13

5.10 Influence of several factors on the the number of iterations. 150

5.11 Influence of several factors on the geometric error. 150

5.12 Influence of several factors on the photometric error. 151

5.13 Examples of registration results for different algorithms. 151

5.14 Panorama calculated wit RectN, RectL, Adap, and MaxC. 152

5.15 Example of deformable mosaic. 152

5.16 Pattern tracking in a video sequence. 153

5.17 Illustration of how some typical hyperparameters influence image registration. 154

5.18 Comparison of the Cauchy distribution and of the actual errors in keypoint locations. 159

5.19 Illustration of the generation of synthetic data. 160

5.20 Relative geometric errors for several criteria used to determine hyperparameters. 161

5.21 Scale parameter of the Cauchy’s M-estimator retrieved using several criteria. 162

5.22 Evolution of the relative geometric error in function of the noise. 162

5.23 Images registered with various approaches for determining the hyperparameters. 163

5.24 Images registered with various approaches for determining the hyperparameters. 165

6.1 BS-Warp and affine imaging conditions. 168

6.2 Bad behavior of the BS-Warp in the presence of perspective effects. 169

6.3 NURBS-Warps and perspective imaging conditions. 170

6.4 Simulated threedimensional surfaces. 173

6.5 Influence of the amount of noise. 173

6.6 Influence of the amount of bending. 174

6.7 Influence of the amount of perspective. 174

6.8 Comparison of the BS-warps and the NURBS-warps. 175

6.9 Warps estimated for a rigid surface. 175

6.10 Warps estimated for a deformable scene. 176

7.1 Inextensible object deformation. 180

7.2 Example of randomly generated piece of paper. 184

7.3 Comparison of the reconstruction errors for different algorithms. 185

7.4 Plot of the length of deformed paths against the length they should have. 186

7.5 Monocular reconstruction algorithms in the presence of a self-occlusions. 187

7.6 Results with several monocular reconstruction algorithms. 188

A.1 Illustration of the Feature-Driven parameterization . 199

A.2 The Feature-Driven warp threading process. 199

A.3 Examples for the warp threading process. 200

A.4 The Feature-Driven warp reversion process. 200

A.5 Illustration of the warp reversion process on three examples. 201

A.6 The three steps of the Compositional Feature-Driven registration. 202

A.7 Generating training data with a Feature-Driven warp. 204

A.8 Illustration of the FFD basis functions. 208

A.9 Standard and extended basis functions. 210

A.10 Examples of extrapolating FFD in the monodimensional case. 211

A.11 Examples of extrapolating FFD warp. 211

14 LIST OF FIGURES

A.12 Comparison of the fitting error of the TPS and FFD warps. 212

A.13 Error between the TPS and FFD warps (1). 213

A.14 Error between the TPS and FFD warps (2). 213

A.15 Comparison of the TPS and the FFD warps for the same driving features. 213

A.16 Example of simulated data. 215

A.17 Comparison of the four algorithms in terms of convergence frequency. 215

A.18 Comparison of the four algorithms in terms of accuracy. 215

A.19 Comparison of the four algorithms in terms of convergence rate. 216

A.20 Registration results for FC-LE on the first T-shirt sequence. 217

A.21 Illustration of our algorithms. 218

A.22 Registration results for FC-LE on the rug sequence. 218

A.23 Registration results for FC-LE on the second T-shirt sequence. 219

A.24 Distribution of the intensity error magnitude. 220

A.25 Comparison of the five piecewise linear relationships in terms of convergence frequency. . . . 221

A.26 Comparison of the five piecewise linear relationships in terms of convergence rate. 222

LIST OF TABLES 15

List of Tables

2.1 Optimization algorithms reviewed in section 2.2.2. 29

2.2 Common radial basis functions. 66

3.1 Properties of the normal distribution. 74

3.2 Properties of the multivariate normal distribution. 74

3.3 Parts of this thesis that deal with hyperparameters. 80

5.1 Advantages and disadvantages of the large and small margins. 146

5.2 RGE for the experiment of figure 5.23. 164

7.1 Summary of the notation used in chapter 7. 179

7.2 Statistics on the relative errors. 186

7.3 Statistics on the Gaussian curvatures. 187

7.4 Average 3D error. 187

A.1 Overview of our Feature-Driven Inverse Compositional Gauss-Newton registration. 203

A.2 Overview of our Learning-based registration. 203

A.3 Results for the first T-shirt sequence. 217

A.4 Results for the paper sequence. 217

A.5 Results for the rug sequence. 219

A.6 Results for the second T-shirt sequence. 219

16 LIST OF TABLES

17

Chapter 1
Introduction

18 Chapter 1. INTRODUCTION

Digital images and videos are nowadays ubiquitous. This stems from the rapid growth of cheap sensors

such as webcams, digital cameras, camcorders, smartphones... A natural consequence of this omnipresence is

a need for sophisticated algorithms to manipulate a massive amount of data. This is one of the reasons why

Computer Vision has become a major research topic over the past few decades.

In a nutshell, the ultimate goal of Computer Vision would be to make computers able to understand the

world into which they ‘live’. Here, the word ‘computer’ must be taken in a broad sense since computing

chips are now not only in classical computers but in many other devices such as smartphones, cars, etc. The

verb ‘to understand’ must also be considered in a really broad sense. Despite all the efforts spent by the

scientists during the past decades, we are still far from having intelligent computers. In a more realistic way,

it would be probably more reasonable to talk about ‘automatic extraction of information’ of images instead

of ‘understanding the world’. The mechanical being does not exist yet but Computer Vision is nonetheless of

broad interest with useful applications in domains such as multimedia, metrology, medical imaging, robotics,

etc. Computer Vision has been present in the professional context for decades now, particularly in the field

of medical imaging. However, the situation is evolving quite rapidly since the beginning of this millennium.

Indeed, Computer Vision is now involved in mass products such as mobile phones, cars, and game consoles.

This has opened brand new perspectives and developments for research in Computer Vision.

The magic triplet

This thesis deals with specific problems in Computer Vision. More precisely, we mainly consider the three

following topics: surface fitting, image registration, and 3D reconstruction in deformable environments. In this

thesis, we always consider parametric approaches. This is a common characteristic to all our contributions. Be-

fore giving general points about the specific problems treated here, let us have a quick look at what a parametric

approach is. Most fundamentally, a parametric approach relies on what we call the ‘magic triplet’1. This magic

triplet is made of the three following elements:

Parametric models. A parametric model is a family of functions that can be described by a finite set of pa-

rameters2. The combination of a parametric model with a set of parameters allows one to model a

phenomenon (such as a surface that fits a cloud of points or the deformation between two images). Many

parametric models may be used in Computer Vision, ranging from very specific models (representing,

for instance, an affine transformation) to models of general use (such as the well-known B-splines that

allows one to model complex transformations such as the image deformation function). The choice of

a ‘good’ parametric model, i.e. a model that can represent the phenomenon under study, is extremely

important. In this thesis, we use many different existing parametric models and also propose new ones.

Parameter estimation. Parameter estimation is a central part of parametric approaches. It consists in finding

an appropriate set of parameters that, combined with a fixed parametric model, ‘explains’ correctly a data

set. This is achieved by modelling the problem under study. It usually results in a ‘score function’ (also

known as criterion, cost function, loss function, or residual error). The minimization (or, sometimes,

maximization) of this criterion is expected to give the right result. The modelling step is a mathematical

formulation of the problem that takes into account various elements such as the nature of the data, the type

of measurement noise, the presence of erroneous data, the prior knowledge one has about the solution,

etc.

1This is a term that the reader will probably not found in the literature but that we nonetheless find quite appropriate.
2An infinite number of parameters could even be considered but is not treated in this work.

19

Hyperparameter estimation. Hyperparameter estimation is another important part of any classical parametric

approach. What we call hyperparameters in this document are the additional parameters that typically

arise in the optimization problems resulting of the modelling step. The number of control points of a

B-spline or the strength given to a regularization prior are examples of hyperparameters. For reasons that

will become clear along this manuscript, hyperparameters cannot be estimated the same way as natural

parameters. Determining in an automatic way good hyperparameters is a challenging problem that is

often neglected. Using appropriate hyperparameters is nonetheless crucial in order to get satisfactory

results with a parametric approach. Part of our work is dedicated to this point.

Computer Vision problems addressed in this thesis

As said previously, the work presented in this thesis focuses on various specific topics in Computer Vision. We

now give a brief overview of these topics. Of course, these elements will be further detailed in the corresponding

chapters of this thesis.

Range surface fitting is the problem of finding an analytic expression of a smooth parametric surface that

approximates a set of 3D data point. In this document, we consider ‘range data’. This type of data is also

known as 2.5D. It may be viewed as a set of 2D locations, each one of which being associated an altitude

(or height, or depth). Range data is now of broad interest because there are some devices that allows one

to get such data quite easily: Time-of-Flight cameras, laser range scanners, etc. The main challenges

encountered in such problems is to cope with noise, large amounts of data, and discontinuities.

Image registration is the problem of determining the transformation between two (or more) images of the

same scene. Various types of transformations may be considered: photometric, geometric. In this docu-

ment, we are mainly interested in geometric transformations. Besides, we focus on deformable environ-

ments. It means that the position (or the shape) of the objects may vary between the images to register.

This implies that complex parametric models must be used to model the deformations. Consequently the

parameter estimation step also becomes quite difficult in general.

3D reconstruction of deformable surfaces. The last problem of Computer Vision addressed in this document

is the reconstruction of a deforming 3D surface from a monocular video. Using the motion cue only

makes it a fundamentally ill-posed problem since there exist an infinite number of 3D shapes that have

the same reprojection in an image. We propose to overcome this problem by considering that the de-

formable surface is inextensible and that a reference shape is available for a template image. Although

these assumptions are common, the way we enforce the underlying constraints is new: we model the re-

constructed surface as a smooth surface (based on tensor-product B-splines) and impose that the surface

be everywhere a local isometry.

Contributions

Various contributions related to the three main topics of the previous section are given in this thesis. We now

give a brief overview of our contributions.

In surface fitting, we propose a new method that allows one to automatically tune the hyperparameters

in an efficient way from a computational point of view. The results we get with our approach are similar to

those obtained with state-of-the-art approaches such as Cross-Validation. We also propose an algorithm to fit a

surface to data presenting heteroskedastic noise, i.e. noise with a variance which is not constant over the whole

20 Chapter 1. INTRODUCTION

dataset. Moreover, our algorithm is extremely fast, which is interesting to process data coming from devices

such as Time-of-Flight cameras.

In image registration, we propose a new parametric warp relying on NURBS (Non Uniform Rational

B-Spline). We show that this model is particularly well-suited to perspective imaging conditions while, on the

contrary, classical Free-Form Deformations relying on B-splines are more adapted to affine imaging conditions.

Practical elements about the estimation of our NURBS-warps’ parameters are also given in details.

In direct image registration, we propose a new modelling of the problem that allows one to discard

the thorny problems caused by the so-called ‘region-of-interest’. This new approach relies on the simple, yet

successful, idea that the parts of the scene seen in one image but out of the field of view in the other images

may be considered as outliers (as the outliers caused, for instance, by occlusions or specularities).

In feature-based image registration, we provide a new principle for automatically tuning the hyperpa-

rameters. This new principle relies on the well-known paradigm of dividing the data into a training set and

a test set. We adapt this principle to the specific context of feature-based image registration by considering

features as the training set and pixel colours as the test set. This approach has the advantage of using all the

available image information (both features and colours). In a sense, this new approach may be considered as

a way of combining the feature-based approach (used for the estimation of the natural parameters of the warp)

and of the direct approach (used to automatically set the hyperparameters).

In 3D surface reconstruction, we propose a new algorithm that reconstructs inextensible surfaces from

a monocular video. Two approaches are proposed. The first one reconstructs a sparse surface, i.e. a cloud of

three-dimensional points. We manage to implement this first approach as a second order cone program. The

second one reconstructs a smooth and parametric surface such as a tensor product B-spline. The founding idea

is to say that the function (the parametric model) representing the reconstructed 3D surface must be locally and

everywhere an isometry. This idea is implemented as a new term which is included in a cost function that also

bundles a data term and a regularization term.

Outline of this thesis

Chapter 2 presents the general tools used in this thesis. In particular, we give all the convention and notation,

the basic elements on optimization, and the most usual parametric models of functions. Chapter 3 also deals

with basic elements but which are more related to the central topics of this thesis, i.e. basics on parameter and

hyperparameter estimation. While these first two chapters only address general points, the other chapters are

specific to our work. In particular, each one of the last chapters includes at least one of our contributions.

Chapter 4 is dedicated to the problem of fitting a parametric smooth surface to range data. General points

about range data are given in this chapter. In particular, some explanations on the standard devices that allows

one to acquire range data are given. We also present our two contributions which are related to the problem

of surface fitting with range data. Chapter 5 is concerned by a fundamental problem in Computer Vision:

image registration. A review of the classical approaches to image registration is given. Then, two contributions

related to parameter estimation in image registration are given in details. Chapter 6 is also dedicated to image

registration. However, we have decided not to merge chapter 5 and chapter 6. Indeed, chapter 5 is about specific

techniques that, given a parametric model, allows one to compute the parameters (and the hyperparameters).

Chapter 6 is different of chapter 5 in the sense that we propose a new parametric model instead of giving

21

methods to estimates the parameters. Chapter 7 deals with the reconstruction of deformable and inextensible

surfaces from a monocular video. This chapter comes last since the tools and methods it proposes may be built

upon the contributions brought in the previous chapters. For instance, the first step in the method we propose

to reconstruct a 3D surface is to register successive images of the video. We conclude and comment our work

and its possible future evolutions in chapter 8.

22 Chapter 1. INTRODUCTION

23

Chapter 2
General Tools

This chapter gives the basic tools required to read this

thesis. We first define the notation. We then deal with the

basic principles of optimization followed by a review of the

most important optimization tools and algorithms. We fin-

ish this chapter by reviewing the parametric function mod-

els that we use the most in this thesis.

24 Chapter 2. GENERAL TOOLS

2.1 Notation, First Definitions

Although most of our notation is compliant with the international standard ISO 31-11 (Thompson and Taylor,

2008), we feel that it is appropriate to give the details of the notation most commonly used in this manuscript.

We also give some basic definitions concerning, for instance, some standard operators or matrices.

2.1.1 Basic Notations

Scalars are denoted in italic Roman lowercase letters (e.g. x) or, sometimes, italic Greek lowercase (e.g. α).

Vectors are written using bold fonts (e.g. p). They are considered as column vectors. Sans-serif fonts are used

for matrices (e.g. M). The elements of a vector are denoted using the same letter as the vector but in an italic

Roman variant. The same remark holds for matrices. Full details on notation and tools for vector and matrices

will be given in section 2.1.4.

2.1.2 Functions

A function is the indication of an input space I , an output spaceO, and a mapping between the elements of these

spaces. A function is said to be monovariate when dim(I) = 1 and multivariate when dim(I) > 1. All the

same way, a function is said to be scalar-valued when dim(O) = 1 and vector-valued when dim(O) > 1. We

use lowercase italic letters for scalar-valued functions (e.g. f) and calligraphic fonts for vector-valued functions

(e.g.W). From time to time, other typographic conventions are used to denominate functions depending on the

context. A function F is defined using this notation: F : I → O. The mapping between an element x ∈ I and

its corresponding image F(x) ∈ O is denoted x 7→ F(x). The vector x is called the free variable (and it can

be replaced by any other notation). The complete definition of a function is written:

F : I −→ O

x 7−→ F(x).
(2.1)

Differential operators. Let f : Rm → R be a scalar-valued function and let x ∈ Rm be the free variable. The

partial derivative of f with respect to xi is denoted by ∂f
∂xi

. The gradient of f evaluated at p is denoted ∇pf(p).

It is considered as a column vector:

∇pf(p) =

∂f
∂x1

(p)
...

∂f
∂xn

(p)

. (2.2)

In practice, the dependency on p is omitted when it is obvious from the context. Consequently, ∇pf(p) is

often shortened to ∇f(p) or even ∇f .

For a vector-valued function F : Rm → Rn, the counterpart of the gradient is the Jacobian matrix, de-

noted JF . If the components of F are denoted {fi}ni=1 then the Jacobian matrix is defined as:

JF (p) =

∂f1
∂x1

(p) . . . ∂f1
∂xm

(p)
...

...
∂fn
∂x1

(p) . . . ∂fn
∂xm

(p)

∈ Rn×m. (2.3)

As for the gradient, the point where the Jacobian matrix is evaluated is omitted when it is clear from the context.

The Hessian matrix of a scalar-valued function f : Rm → R is the matrix of the partial derivatives of

2.1 NOTATION, FIRST DEFINITIONS 25

second order. This matrix is denoted Hf and it is defined by:

Hf (p) =

∂2f
∂x2

1
(p) ∂2f

∂x1∂x2
(p) . . . ∂2f

∂x1∂xm
(p)

∂2f
∂x2∂x1

(p) ∂2f
∂x2

2
(p) . . . ∂2f

∂x2∂xm
(p)

...
...

...
∂2f

∂xm∂x1
(p) ∂2f

∂xm∂x2
(p) . . . ∂2f

∂x2
m
(p)

∈ Rm×m. (2.4)

As for the gradient and the Jacobian matrix, we consider that the notation Hf (p) is equivalent to the notation Hf

when the vector p is obvious from the context.

2.1.3 Sets and Collections

The sets are usually written using upper-case letters (e.g. S). The usual sets of numbers are denoted using

the blackboard font: N for the natural numbers, Z for the integers, Q for the rational numbers, R for the real

numbers, and C for the complex numbers1. The explicit definition of a set is denoted using the curly brackets

(e.g. A = {1, 2, . . . , 10} = {i | i = 1, . . . , 10} = {i}10i=1). The vertical bar in a set definition is synonym of the

expression ‘such that’ (often abbreviated ‘s.t.’). Following the Anglo-Saxon convention, we consider that N =

{1, 2, . . .} and N∗ = {0, 1, 2, . . .}while R is the set of all the real numbers and R∗ = Rr{0}. The set of all the

positive (respectively negative) real numbers is denoted R+ (respectively R−). The Cartesian product of two

sets is designated using the× symbol, i.e. for two sets A and B, we have A×B = {(a, b) | a ∈ A and b ∈ B}.
The notation An represents the Cartesian product of A with itself iterated n times. The symbols used for the

intersection, the union, and the difference are respectively ∩, ∪, and r.

Real intervals are denoted using brackets: [a, b] is the set of all the real numbers x such that a ≤ x ≤ b.

The scalars a and b are called the endpoints of the interval. We use outwards-pointing brackets to indicate the

exclusion of an endpoint: for instance,]a, b] = {x ∈ R | a < x ≤ b}.
Integer intervals (also known as discrete intervals) are denoted using either the double bracket notation or

the ‘three dots’ notation. For instance, the integer interval {−1, 0, 1, 2}may be written J−1, 2K or {−1, . . . , 2}.
Collections, i.e. grouping of heterogeneous or ‘complicated’ elements such as point correspondences are

denoted using fraktur fonts (e.g. D).

2.1.4 Matrices and Vectors

Matrices are denoted using sans serif font (e.g. M). Although a vector is a special matrix, we use bold symbols

for them (e.g. p or β). By default, vectors are considered as column vectors. The set of all the matrices defined

over R and of size m × n is denoted Rm×n. The transpose, the inverse, and the pseudo-inverse of a matrix A

are respectively denoted AT, A−1, and A†. The pseudo-inverse is generally defined as A† =
(
ATA

)−1
AT (see

section 2.2.2.6). The coefficient located at the intersection of the ith row and the jth column of the matrix A

is denoted ai,j . The coefficients of a vector are noted using the same letter but with the bold removed. For

instance, the ith coefficient of the vector β is written βi.

1Historically, these sets were typed using simple bold font but since it was difficult to make bold fonts on black boards, mathemati-

cians created the ‘double-bar’ letters which were later adopted by typographers.

26 Chapter 2. GENERAL TOOLS

Parentheses and brackets. We use either the parenthesis or squared brackets when giving the explicit form

of a matrix. Parenthesis are used when the elements are scalars, e.g. :

A =

(

a11 a12 a13

a21 a22 a23

)

. (2.5)

The bracket notation is used when the matrix is defined with ‘blocks’, i.e. juxtaposition of matrices, vectors,

and scalars. For instance:

B =

[

A 2A

3A 4A

]

. (2.6)

Common matrices. The identity matrix of size n× n is denoted In:

In =

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

∈ Rn×n. (2.7)

The matrix of size m × n filled with zeros is denoted 0m×n. The subscripts in the notation In and 0m×n are

often omitted when the size can be easily deduced from the context.

Common operators. The operator vect is used for the column-wise vectorization of a matrix. For instance,

if A ∈ Rm×n:

vect(A) =

a1
...

an

, with A =

[

a1 · · · an

]

. (2.8)

The operator diag deals with diagonal matrices. The effect of this operator is similar to the one of the diag

function in Matlab. Applied to a vector d ∈ Rn, it builds a matrix D ∈ Rn×n such that:

D =

d1 0 . . . 0

0 d2
. . .

...
...

. . .
. . . 0

0 . . . 0 dn

. (2.9)

Conversely, when applied to a square matrix M ∈ Rn×n, the operator diag builds a vector that contains the

diagonal coefficients of M:

diag(M) =
(

m1,1 . . . mn,n

)T

. (2.10)

The Hadamard product. The Hadamard product of two matrices, also known as the element-wise product,

is denoted with the ⊙ symbol. The Hadamard product of the matrices A and B is the matrix C = A ⊙ B such

that ci,j
def
= ai,jbi,j . The matrices A, B, and C all have the same size.

The Kronecker product. The Kronecker product, denoted with the symbol ⊗, is a binary operation on two

matrices of arbitrary sizes. Let A ∈ Rma×na and B ∈ Rmb×nb be two matrices. The Kronecker product of A

2.2 BASICS ON CONTINUOUS OPTIMIZATION 27

and B is defined as follows:

A⊗B =

a11B · · · a1naB

...
...

ama1B · · · amanaB

. (2.11)

Vector norms. The p-norm of a vector v ∈ Rn is denoted ‖v‖p. It is defined for p ≥ 1 by:

‖v‖p def
=

(
n∑

i=1

|vi|p
) 1

p

. (2.12)

Note that the 1-norm is also known as the taxicab norm or the Manhattan norm. The 2-norm corresponds to

the Euclidean norm. In this case, we prefer the notation ‖v‖ instead of the notation ‖v‖2:

‖v‖ def
=

√
√
√
√

n∑

i=1

v2i . (2.13)

The maximum norm, also known as the infinity norm or uniform norm, is denoted ‖v‖∞. It is defined as:

‖v‖∞ def
= max

i∈J1,nK
|vi|. (2.14)

Note that the maximum norm corresponds to the p-norm when p→∞.

The Frobenius norm. The Frobenius norm of a matrix A ∈ Rm×n is denoted ‖A‖F . It is defined as:

‖A‖F def
=

√
√
√
√

m∑

i=1

n∑

j=1

a2i,j . (2.15)

The Frobenius norm of a matrix is related to the Euclidean norm of a vector in the sense that they are both

defined as the square root of the sum of the squared coefficients. In fact, we have the following equality:

‖A‖F = ‖vect(A)‖. (2.16)

2.1.5 Other Common Notation

Logic. The symbol ∀ means ‘for all’ and the symbol ∃ means ‘there exists’.

Limits. The symbol→ is synonym of ‘tends to’ (e.g. x→∞ means that x tends to the infinite).

Others. Some other notation will surely come during the next few weeks.

2.2 Basics on Continuous Optimization

Most of the problems solved in this thesis can be formulated as optimization problems. In this section, we give

some general points on optimization. We also give details on the most used optimization algorithms in this

document. The statistical grounds of certain type of cost function will be explained in section 3.1.

28 Chapter 2. GENERAL TOOLS

2.2.1 Generalities on Optimization

Unconstrained optimization. In its general form, an unconstrained minimization problem has the following

form (Björck, 1996; Boyd and Vandenberghe, 2004; Culioli, 1994; Nocedal and Wright, 1999; Press et al.,

1992):

min
x
f(x). (2.17)

The function f is a scalar-valued function named the cost function or the criterion. It is assumed that the cost

function is defined on Rn. In some cases later explained, f can be a vector-valued function instead of a scalar-

valued one. Note that we only consider the case of the minimization of the cost function since the problem of

maximization can easily be turned into a minimization problem (by taking the negative of the cost function).

Constrained optimization. A constrained minimization problem is similar to an unconstrained minimization

problem except that supplemental conditions on the solution must be satisfied. Such a problem has the following

form:
min
x

f(x)

subject to x ∈ C,
(2.18)

where C is a set defining the constraints. These constraints can take many forms. For instance, it can be

inequality constraints such as xi ≥ 0, linear equality constraints such as Ax = b for some matrix A and some

vector b. It can also be more complex constraints such as g(x) ≤ 0 where g is some function. These are just a

few examples.

In this section we focus on unconstrained minimization problem since it is the main tool used in this thesis.

Optimization algorithms. An optimization algorithm is an algorithm that provides a solution to an opti-

mization problem. There exists a vast amount of optimization algorithms. The algorithm used to solve an

optimization problem depends on the properties of the cost function and of the constraints. For instance, the

optimization algorithm depends on the differentiability of the cost function. It can also exploit a particular form

of the cost function (for instance, a cost function defined as a sum of squares).

Global optimization. The ultimate goal of a minimization problem is to find a global minimum of the cost

function, i.e. a vector x⋆ such that:

∀x ∈ Ω, f(x⋆) ≤ f(x). (2.19)

The solutions proposed by optimization algorithms are only guaranteed to be local minima. A vector x is said

to be a local minimizer of the function f if the following statement is true:

∃r ∈ R⋆
+ : ∀y : ‖x− y‖ ≤ r : f(x) ≤ f(y). (2.20)

When the function f is differentiable, a necessary condition for x to be a local minimizer is:

∇f(x) = 0. (2.21)

A local minimum of the function f is not necessarily a global minimum of the function. Indeed, a cost function

may have several local minima. Deciding whether a local minima is a global minimum or not is an undecidable

problem.

2.2 BASICS ON CONTINUOUS OPTIMIZATION 29

Name Abb. Cost function Sec

Downhill simplex × Arbitrary 2.2.2.2

Gradient descent GD Once differentiable 2.2.2.3

Newton × Twice differentiable 2.2.2.4

Gauss-Newton GN
Sum of squared functions→ non-linear

least-squares (NLS)
2.2.2.5

Levenberg-Marquardt LM NLS 2.2.2.7

Cholesky factorization ×
Linear system of equations Ax = b (with

A positive definite) and, coincidently, sum

of squared linear functions→ linear

least-squares (LLS)

2.2.2.8

QR factorization × LLS 2.2.2.9

Singular Value

Decomposition
SVD LLS 2.2.2.10

Iteratively Reweighted

Least-Squares
IRLS

Weighted sum of squared functions with

variable weights
2.2.2.11

Golden section search × Mono-variate, scalar-valued, uni-modal 2.2.2.12

Table 2.1: Optimization algorithms reviewed in section 2.2.2. They are ordered from the more generic to the less generic. ‘Abb.’

in the second column stands for ‘Abbreviation’.

Convex functions and global optimization. Convexity is a particularly interesting property for a function.

Indeed, if a cost function is convex then it has only one minimum which is therefore a global minimum of the

function. Note that the converse is not true; there exist non-convex functions which have only one (global)

minimum.

Convex function. Let f : Ω ⊂ Rn → R be a scalar-valued function. Let x ∈ Ω and y ∈ Ω. A scalar

function f is said to be convex if the following condition holds for all α ∈ [0, 1]:

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). (2.22)

Alternatively, if the function f is twice differentiable, then f is convex if the Hessian matrix Hf is positive

definite.

A strictly convex function is a function that satisfies equation (2.22) with the ≤ sign replaced by <. Note

that the Hessian matrix of a twice differentiable strictly convex function is not necessarily strictly positive

definite: it might only be positive definite.

2.2.2 Optimization Algorithms

In this section, we present the unconstrained minimization algorithms mostly used in this thesis. The choice

of an optimization algorithm depends on the properties of the cost function to be minimized. These algorithms

can be classified according to several criterion. Table 2.1 summarizes the optimization algorithm reviewed in

this section and the properties that must be satisfied by the cost function.

This section is organized as follows: we go from the less restrictive algorithms (in terms of conditions on

the cost function) to most restrictive ones (i.e. the more specific). Two sections not dedicated to a specific

optimization algorithm are intercalated in this section: section 2.2.2.1 gives some general points on iterative

optimization algorithms, and section 2.2.2.6 talks about the normal equations.

30 Chapter 2. GENERAL TOOLS

2.2.2.1 Iterative Optimization Algorithms

Before talking about the details, let us start with some generalities on the optimization algorithms. Most of these

algorithms are iterative algorithms. This means that they start from an initial value x(0) which is then iteratively

updated. Therefore, an iterative optimization algorithm builds a sequence {x(i)}i⋆i=1 that may converge towards

a local minimum of the cost function, i.e. x(i⋆) may be close to a local minimum of the solution. With a cost

function that has several minima, the initial value x(0) determines which minimum is found. This initial value

is thus extremely important.

An important aspect of iterative optimization algorithm is the stopping criterion. For the algorithm to be

valid, the stopping criterion must be a condition that will be satisfied in a finite and reasonable amount of time.

A stopping criterion is usually the combination of several conditions. For instance, one can decide to stop

the algorithm when the change in the solution becomes very small, i.e. when ‖x(i+1) − x(i)‖ < ε with ε a

small fixed constant (for instance, ε < 10−6). Of course, this approach does not account for the scale of the

solution. One may replace this condition using, for instance, a relative change, i.e. ‖x(i+1)−x(i)‖/‖x(i)‖ < ε.

Another standard stopping criterion is the change in the cost function value: |f(x(i+1)) − f(x(i))| ≤ ε. A

maximal number of iterations must also be determined to guarantee that the optimization algorithm will finish

in a finite amount of time. Indeed, the previous two stopping criterion may never be satisfied. In the rest of this

section, we will denote STOP-CRIT the stopping criterion. In addition to what was just presented, the content

of STOP-CRIT will be further detailed depending on the optimization algorithm.

2.2.2.2 Downhill Simplex

The downhill simplex method is an optimization algorithm due to (Nelder and Mead, 1965). It is a heuristic

that does not make any assumption on the cost function to minimize. In particular, the cost function must not

satisfy any condition of differentiability. It relies on the use of simplices, i.e. polytopes of dimension n + 1.

For instance, in two dimensions, a simplex is a polytope with 3 vertices, most commonly known as a triangle.

In three dimensions, a simplex is tetrahedron.

We now explain the mechanisms of the downhill simplex method of (Nelder and Mead, 1965). Note that

more sophisticated versions of this method have been proposed. This is the case, for instance, of the algorithm

used by the fminsearch function of Matlab.

The downhill simplex method starts from an initial simplex. Each step of the method consists in an update

of the current simplex. These updates are carried out using four operations: reflection, expansion, contraction,

and multiple contraction. Let f : Rn → R be the function to minimize and let {x0, . . . ,xn} be the current

simplex (xi ∈ Rn for all i ∈ J0, nK). Let h ∈ J0, nK be the index of the ‘worst vertex’, i.e. the value h =

argmaxi f(xi) and let l ∈ J0, nK be the index of the ‘best vertex’, i.e. the value l = argmini f(xi). The

downhill simplex method and the four fundamental operations are detailed in algorithm 1. Figure 2.1 illustrates

the four fundamental operations on a 3-simplex. In figure 2.3, as an example, the downhill simplex method is

used to optimize the Rosenbrock function (see below).

Stopping criterion. The stopping criterion used by (Nelder and Mead, 1965) is defined by:

√
√
√
√

1

n+ 1

n∑

i=0

(

f(xi)− f(xi)
)2
≤ ε, (2.23)

with f(xi) the average of the values {f(xi)}ni=0, and ε a predefined constant. This criterion has the advantage

of linking the size of the simplex with an approximation of the local curvature of the cost function. A very

2.2 BASICS ON CONTINUOUS OPTIMIZATION 31

Algorithm 1: Downhill simplex of (Nelder and Mead, 1965).

input : the cost function f : Rn → R

{xi}ni=0 an initial simplex

output: x⋆, a local minimum of the cost function f .

1 begin

2 k ← 0
3 while STOP-CRIT and (k < kmax) do

4 h← argmax
i
f(xi)

5 l← argmin
i
f(xi)

6 x′ ← (1 + α)x̄− αxh

7 where α > 0 is the reflection coefficient

8 if f(x′) < f(xl) then

9 x′′ ← (1 + γ)x′ − γx̄
10 where γ > 1 is the expansion coefficient

11 if f(x′′) < f(xl) then

12 xh ← x′′ /* expansion */

13 else

14 xh ← x′ /* reflection */

15 else if f(x′) > f(xi), ∀i 6= h then

16 if f(x′) ≤ f(xh) then

17 xh ← x′ /* reflection */

18 x′′ ← βxh + (1− β)x̄
19 where 0 < β < 1 is the contraction coefficient

20 if f(x′′) > f(xh) then

21 xi ← xi+xl
2 ∀i ∈ J0, nK /* multiple contraction */

22 else

23 xh ← x′′ /* contraction */

24 else

25 xh ← x′ /* reflexion */

26 k ← k + 1

27 return xl

32 Chapter 2. GENERAL TOOLS

(a) (b) (c)

Figure 2.1: Illustration in 2 dimensions of the four fundamental operations applied to the current simplex by the downhill simplex

method of (Nelder and Mead, 1965): (a) reflection and expansion, (b) contraction, and (c) multiple contraction.

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Figure 2.2: Contour plot of the Rosenbrock banana function.

accurate minimum is often obtained for a high curvature of the cost function. On the contrary, a minimum

located in a flat valley of the cost function carries less information. Therefore, it does not make much sense to

shrink an optimal simplex which would be almost flat.

Rosenbrock function. When it is possible, the algorithms presented in this section are illustrated on the

Rosenbrock function. This function, also known as the banana function, has been a standard test case for

optimization algorithms. It is a two-dimensional function defined as:

f(x) = (1− x1)2 + α(x2 − x21)2, (2.24)

with α a positive constant. In our illustrations, we use α = 10. The minimum is inside a long, narrow,

parabolic flat valley. Finding the valley is simple but finding the actual minimum of the function is less trivial.

The minimum of the Rosenbrock function is located at the point of coordinate x⋆ = (1, 1), whatever the value

given to α. Figure 2.2 gives an illustration of this function.

2.2.2.3 Gradient descent

The method of gradient descent (also known as the method of steepest descent or Cauchy’s method) is one

the most simple algorithm for continuous optimization (Culioli, 1994). It was first designed to solve linear

system a long time ago (Cauchy, 1847). It is an iterative algorithm that relies on the fact that the value of the

cost function decreases fastest in the direction of the negative gradient (for a differentiable cost function). The

principle of the gradient descent algorithm is given in algorithm 2.

The exact line search procedure of line 5 in algorithm 2 can be replaced with an approximate line search

procedure such that the value α(k) satisfies the Wolfe conditions (Michot et al., 2009; Nocedal and Wright,

1999) (see below).

2.2 BASICS ON CONTINUOUS OPTIMIZATION 33

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Initialization Iteration #1 Iteration #2 Iteration #3

0 0.5 1

0

0.5

1

0 0.5 1

0

0.5

1

0.7 1
0.7

1

0.96 1 1.04

0.96

1

1.04

Iteration #8 Iteration #20 Iteration #70 Iteration #85

Figure 2.3: Illustration of the downhill simplex method of (Nelder and Mead, 1965) with the Rosenbrock function. The minimum

of this function is at the point of coordinate (1,1), represented by the red point on the figures. Here, the convergence is reached

in 85 iterations.

Algorithm 2: Gradient Descent

input : f : Rn → R a differentiable function

x(0) an initial solution

output: x⋆, a local minimum of the cost function f .

1 begin

2 k ← 0
3 while STOP-CRIT and (k < kmax) do

4 x(k+1) ← x(k) − α(k)
∇f(x)

5 with α(k) = arg min
α∈R+

f
(
x(k) − α∇f(x)

)

6 k ← k + 1

7 return x(k)

34 Chapter 2. GENERAL TOOLS

Properties. As a first remark, we can notice that the successive search directions used by the gradient descent

method are always orthogonal to the level sets of the cost functions. Second, we may also notice that if an

exact line search procedure is used, then the method of gradient descent is guaranteed to converge to a local

minimum. Under some mild assumptions, it has also been proven to converge with an inexact line search

procedure (see, for instance, (Burachik et al., 1996)). However, this convergence is usually very slow. This

stems from the fact that, if an exact line search procedure is used, two successive directions are necessarily

orthogonal. This is easy to see. Indeed, if α(k) minimizes f(x(k) − α(k)
∇f(x(k))) then we have:

∂

∂α
f(x(k) − α(k)

∇f(x(k))) = 0 (2.25)

⇔ ∇f(x(k) − α(k)
∇f(x(k)))T∇f(x(k)) = 0 (2.26)

⇔ ∇f(x(k+1))T∇f(x(k)) = 0, (2.27)

which proves that the search directions at iteration (k) and (k + 1) are orthogonal. Therefore, the path formed

by the values {x(0), . . . ,x⋆} is shaped like a stairs. Figure 2.4 gives an illustration on the Rosenbrock function

of this typical behaviour of the gradient descent method.

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

0.8 0.9 1

0.8

0.9

1

(a) (b)

Figure 2.4: Illustration of the successive steps taken by the method of the gradient descent for optimizing the Rosenbrock

functions. Notice that the successive search directions are orthogonal. In (b), we see the typical stair effect of this method. It

makes the convergence very slow. Indeed, after 100 iterations, convergence has not yet been reached.

Approximate line search and Wolfe conditions. Given a search direction δ, an exact line search procedure

amounts to solve the following mono-dimensional minimization problem:

min
α
f(x+ αδ). (2.28)

Problem (2.28) can be solved using an algorithm such as the golden section search that will be presented in

section 2.2.2.12. Depending on the function f , problem (2.28) can be heavy to compute. Another approach

consists in doing an approximate line search. It consists in starting from an initial estimate of α and then refine

it so that the Wolfe conditions are satisfied. The Wolfe conditions gives some criteria to decide whether a step α

is satisfactory or not. In its basic form, there are two Wolfe conditions:

1. f(x+ αδ) ≤ f(x) + ω1αδ
T
∇f(x)

2. δT∇f(x+ αδ) ≥ ω2δ
T
∇f(x)

with ω1 and ω2 two constants such that 0 < ω1 < ω2 < 1. ω1 is usually chosen as a small constant and ω2 as

a constant (much) bigger than ω1. The first condition (also known as the Armijo condition) avoids long steps

2.2 BASICS ON CONTINUOUS OPTIMIZATION 35

that would not decrease much the cost function. The second condition (also known as the curvature condition)

forces the step to minimize the curvature of the cost function.

2.2.2.4 Newton’s Method

Newton’s method is another iterative optimization algorithm that minimizes a twice-differentiable function

f : Rn → R. It relies on the second order Taylor expansion of the function f around the point x:

f(x+ δ) = f(x) +∇f(x)δ +
1

2
δTHf (x)δ +O(‖δ‖2). (2.29)

Each step of the Newton’s method consists in finding the minimum of the quadratic approximation of the

function f around the current point x. This principle can be stated using the second order Taylor expansion

of f :

min
δ
f(x) +∇f(x)δ +

1

2
δTHf (x)δ. (2.30)

A necessary condition for problem (2.30) is obtained by setting to zero the derivative (with respect to δ) of the

cost function in equation (2.30). This amounts to solve the following linear system of equations:

Hf (x)δ = −∇f(x). (2.31)

The search direction δ for the Newton method is thus given by:

δ = −
(
Hf (x)

)−1
∇f(x). (2.32)

Note that, in practice, the inverse Hessian matrix in equation (2.32) does not need to be explicitly calculated ;

it is possible to compute δ from equation (2.31) using an efficient solver of linear systems.

The complete Newton’s method is summarized in algorithm 3.

Algorithm 3: Newton’s Method

input : f : Rn → R a twice-differentiable function

x(0) an initial solution

output: x⋆, a local minimum of the cost function f .

1 begin

2 k ← 0
3 while STOP-CRIT and (k < kmax) do

4 x(k+1) ← x(k) + δ(k)

5 with δ(k) = −
(
Hf

(
x(k)

))−1
∇f
(
x(k)

)

6 k ← k + 1

7 return x(k)

Algorithm 3 is the constant step version of Newton’s algorithm. The update x = x + δ is often replaced

by the update x = x + γδ where γ is a positive value smaller than 1. This is done to insure that the Wolfe

conditions are satisfied for each step of the algorithm.

Convergence. Every local minimum of the function f has a neighbourhood N in which the convergence of

Newton’s method with constant step is quadratic (Culioli, 1994). In other words, if we initialize the Newton’s

method with x(0) ∈ N , the convergence is quadratic. Outside of the neighbourhoods of the local minima

of the cost function, there are no guarantee that Newton’s method will converge. Indeed the condition of

36 Chapter 2. GENERAL TOOLS

equation (2.31) is just a necessary condition for having a local minimum: it is not a sufficient condition.

The condition of equation (2.31) is also satisfied for a local maximum or a saddle point of the cost function.

Therefore, Newton’s method can converge towards such points.

Illustration. An illustration of Newton’s method on the Rosenbrock function is given in figure 2.5. Two

variants are presented in this figure: the constant step length variant and the optimal step length determined

with a line search strategy.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

(a) (b)

Figure 2.5: Illustration of the successive steps taken by Newton’s method for optimizing the Rosenbrock functions. (a) Constant

step length variant. (b) Step length determined with an optimal line search strategy. On the Rosenbrock function, the Newton

method is usually faster to converge than the gradient descent strategy. In this particular example, convergence is reached

within 6 iterations for the constant step length variant and 10 iterations with the optimal line search strategy.

Quasi-Newton algorithms. Newton’s method is great since it usually converges quickly. This means that

it does not take a lot of iterations to reach the minimum. However, each iteration of this algorithm can be

costly since it requires one to compute the Hessian matrix. The goal of quasi-Newton approach is to replace

the Hessian matrix by some good approximation, less heavy to compute. There exists several formula to make

these approximations iteratively: DFP, SR1, BFGS (Culioli, 1994). We will not detail these formula here but

we will give the general principle. As for Newton’s method, quasi-Newton relies on the second order Taylor

expansion of the function to optimize, except that the Hessian matrix is replaced with an approximation A:

f(x+ δ) ≈ f(x) +∇f(x)δ +
1

2
δTAδ. (2.33)

The gradient of this approximation with respect to δ is given by:

∇f(x+ δ) ≈∇f(x) + Aδ. (2.34)

The general principle of a quasi-Newton approach is to choose the matrix A such that:

∇f(x+ δ) = ∇f(x) + Aδ. (2.35)

The difference between the different formula are the properties that the matrix A satisfies at each iteration of the

algorithm. For instance, the BFGS method guarantees that the matrix A will always be symmetric and positive

definite. In this case, the approximation of the cost function is convex and, therefore, the search direction is

guaranteed to be a descent direction.

2.2 BASICS ON CONTINUOUS OPTIMIZATION 37

2.2.2.5 Gauss-Newton Algorithm

The Gauss-Newton method is an optimization algorithm used to minimize a cost function that can be written

as a sum of squares, i.e. if f : Rn → R:

f(x) =

m∑

i=1

(fi(x))
2 , (2.36)

where each fi for i ∈ J1,mK is a function of the form fi : R → R. The only hypothesis that must be

satisfied for the Gauss-Newton algorithm is that the functions fi must all be differentiable. Equation (2.36) is

the very definition of a least-squares problem. For reasons that will become clear in the next section, least-

squares cost functions often arises when estimating the parameters of a parametric model. The derivation of

the Gauss-Newton algorithm is more conveniently done if we consider the minimization of a vector-valued

function F : Rn → Rm:

min
x
‖F(x)‖2, (2.37)

where F is defined as:

F(x) =

f1(x)
...

fm(x)

. (2.38)

Note that solving problem (2.37) is completely equivalent to minimizing the function f as defined in equa-

tion (2.36). The Gauss-Newton algorithm is an iterative algorithm where each step consists in minimizing the

first-order approximation of the function F around the current solution. The first-order approximation of F is

given by:

F(x+ δ) = F(x) + JF (x)δ. (2.39)

Therefore, each step of the Gauss-Newton algorithm consists in determining the step δ by solving the following

minimization problem:

min
δ
‖F(x) + JF (x)δ‖2. (2.40)

Problem (2.40) is a linear least-squares minimization problem. As it will be seen later, such a problem can

easily be solved. Algorithm 4 gives the complete principle of the Gauss-Newton method. As for the others

algorithms presented so far, a line-search procedure can be combined to the step.

Algorithm 4: Method of Gauss-Newton

input : f : Rn → R a function such that f(x) =
∑m

i=1(fi(x))
2 where all the fi are differentiable

functions from Rn to R

x(0) an initial solution

output: x⋆, a local minimum of the cost function f .

1 begin

2 k ← 0
3 while STOP-CRIT and (k < kmax) do

4 x(k+1) ← x(k) + δ(k)

5 with δ(k) = argmin
δ
‖F(x(k)) + JF (x(k))δ‖2

6 k ← k + 1

7 return x(k)

38 Chapter 2. GENERAL TOOLS

Properties. It can be shown that the step δ is a descent direction (Björck, 1996). If the algorithm converges

then the limit is a stationary point of the function f (but not necessarily a minimum). However, with no

assumptions on the initial solution, there is no guarantee that the algorithm will converge, even locally.

With a good starting point and a ‘nice’ function f (i.e. a mildly nonlinear function), the convergence speed

of the Gauss-Newton method is almost quadratic. However, it can be worse than quadratic if the starting point

is far from the minimum or if the matrix J
T

FJF is ill-conditioned.

Illustration. The Rosenbrock function can be written as a sum of squares if we define the functions f1 and

f2 in the following way:

f1(x) = 1− x1 (2.41)

f2(x) =
√
α(x2 − x21) (2.42)

Figure 2.6 shows the step taken by the Gauss-Newton algorithm for minimizing the Rosenbrock function.

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

1.5

Figure 2.6: Illustration of the Gauss-Newton method on the Rosenbrock function. For this simple example, the optimal solution

is found in 2 iterations.

2.2.2.6 The Normal Equations

We broke a little bit our classification of the optimization algorithms and present now a basic tool for linear

least-squares problems: the normal equations. We do so because, as it was just seen, the iterations of the Gauss-

Newton algorithm involves the solution of a linear least-squares minimization problem. Besides, a part of the

algorithm we present next, namely the Levenberg-Marquardt algorithm, uses the so-called normal equations.

Let f : Rn → R be the function to minimize. Let us suppose that f can be written as a sum of squares

of the form f(x) =
∑m

i=1(fi(x) − yi)2, where the functions fi : R
n → R are linear with respect to x (i.e.

∃fi ∈ Rn such that fi(x) = fTi x, for all i ∈ J1,mK) and where yi ∈ R for all i ∈ J1,mK. Minimizing the

function f can be stated in matrix form:

min
x
‖Fx− y‖2, (2.43)

where the matrix F ∈ Rm×n and the vector y ∈ Rm are defined by:

FT =
[

f1 · · · fm

]

, yT =
(

y1 · · · ym

)

. (2.44)

If the matrix F has full column rank (Björck, 1996), problem (2.43) can be solved using the normal equations:

FTFx = FTy. (2.45)

2.2 BASICS ON CONTINUOUS OPTIMIZATION 39

The hypothesis that F has full column rank allows us to say that the square matrix FTF is invertible. The

solution of problem (2.45) (and therefore of problem (2.43)) is given by:

x =
(

FTF

)−1
FTy. (2.46)

Since the matrix
(
FTF

)−1
FT has full column rank, it is the Moore-Penrose pseudo-inverse matrix of F and

is denoted F†. It is generally a bad practice to explicitly compute the pseudo-inverse matrix (Golub and Van

Loan, 1996a). We will see later in this document several methods designed to efficiently solve the linear system

of equation (2.45). Note that F being full column rank necessary implies that F must have more rows than

columns, i.e. m ≥ n. There exists several ways to derive the normal equations. For instance, one can get them

by writing the optimality conditions of problem (2.43), i.e. :

∂

∂x
‖Fx− y‖2 = 0. (2.47)

The normal equations are trivially derived by noticing that ‖Fx− y‖2 = (Fx− y)T(Fx− y). Another way to

obtain the normal equations is to consider the over-determined linear system of equations:

Fx = y. (2.48)

Since this linear system of equations is over-determined, it does not have necessarily an exact solution. In this

case, we can seek for an approximate solution by finding the point of the column space of F which is as close

as possible to the point y. The shortest distance between a point and an hyperplane is the distance between the

point and its orthogonal projection into the hyperplane. This is illustrated by figure 2.7. In other words, the

vector y − Fx must lie in the left nullspace of F, which can be written:

FT(y − Fx) = 0. (2.49)

Equation (2.49) are exactly equivalent to the normal equations.

Figure 2.7: Graphical interpretation of the normal equations.

2.2.2.7 Levenberg-Marquardt

The Levenberg algorithm is another method to solve a least-squares minimization problem proposed by (Lev-

enberg, 1944). (Marquardt, 1963) proposed a slight variation of the initial method of Levenberg known as the

Levenberg-Marquardt algorithm. The content and the presentation of this section is inspired by (Madsen et al.,

2004). We use the same notation than in the section dedicated to the Gauss-Newton algorithm. The normal

equations can be used for the step in the Gauss-Newton algorithm. This step, denoted δgn in this section,

can thus be written δgn = (JTJ)−1
Jf , where J is the Jacobian matrix of the function F evaluated at x, and

40 Chapter 2. GENERAL TOOLS

fT =
(

f1(x) . . . fm(x)
)

. The Levenberg and the Levenberg-Marquardt algorithms are damped versions of

the Gauss-Newton method. The step for the Levenberg algorithm, denoted δl, is defined as:

(JTJ+ λI)δl = Jf , (2.50)

while the step for the Levenberg-Marquardt algorithm, denoted δlm, is defined as:

(JTJ+ λdiag(JTJ))δlm = Jf . (2.51)

From now on, we only consider the Levenberg-Marquardt algorithm2. The linear system of equation (2.51) is

called the augmented normal equations. The value λ is a positive value named the damping parameter. It plays

several roles. First, the matrix J
T
J + λdiag(JTJ) is positive definite. Therefore, δlm is necessarily a descent

direction. For large values of λ, δlm ≈ − 1
m∇f . In this case, the Levenberg-Marquardt algorithm is almost a

gradient descent method (with a short step). This is a good strategy when the current solution is far from the

minimum. On the contrary, if λ is a small value, then the Levenberg-Marquardt step δlm is almost identical

to the Gauss-Newton step δgn. This is a desired behaviour for the final steps of the algorithm since, near the

minimum, the convergence of the Gauss-Newton method can be almost quadratic.

Both the length and the direction of the step are influenced by the damping parameter. Consequently,

there is no need for a line-search procedure in the iterations of this algorithm. The value of the damping

parameter λ is updated along with the iterations according to the following strategy. If the current λ results in

an improvement of the cost function, then the step is applied and λ is divided by a constant ν (with, typically,

ν = 2). On the contrary, if the step resulting of the current λ increases of the function, the step is discarded

and λ is multiplied by ν. This is the most basic stratagem for updating the damping parameter. There exists

more evolved approach, such as the one presented in (Madsen et al., 2004). The whole Levenberg-Marquardt

method is given in algorithm 5. Figure 2.8 gives an illustration of the Levenberg-Marquardt algorithm on the

Rosenbrock function.

-1 -0.5 0 0.5 1

-0.5

0

0.5

1

1.5

Figure 2.8: Illustration of the Levenberg-Marquardt algorithm for optimizing the Rosenbrock function. In this particular example,

this algorithm took 25 iterations to reach the minimum.

2.2.2.8 Cholesky Factorization

A word about linear systems of equations. We now provides some tools for solving efficiently a linear sys-

tem of equations. This is of great interest in optimization since we have seen that solving a linear least-squares

minimization problem is equivalent to finding a solution to the linear system formed by the normal equations.

Besides, other optimization problems (not necessarily written as linear least-squares problem) involves a linear

2Note that in the recent literature, the Levenberg-Marquardt algorithm is often confused with the Levenberg algorithm.

2.2 BASICS ON CONTINUOUS OPTIMIZATION 41

Algorithm 5: Levenberg-Marquardt algorithm

input : f : Rn → R a function such that f(x) =
∑m

i=1(fi(x))
2 where all the fi are differentiable

functions from Rn to R

x(0) an initial solution

output: x⋆, a local minimum of the cost function f .

1 begin

2 k ← 0

3 λ← maxdiag(JTJ)

4 x← x(0)

5 while STOP-CRIT and (k < kmax) do

6 Find δ such that (JTJ+ λdiag(JTJ))δ = J
Tf

7 x′ ← x+ δ

8 if f(x′) < f(x) then

9 x← x′

10 λ← λ
ν

11 else

12 λ← νλ

13 k ← k + 1

14 return x

least-squares problem in their iterations. Let us consider the following linear system of equations:

Ax = b, (2.52)

with A ∈ Rn×n a square matrix, and b ∈ Rn. The problem equation (2.52) admits a single solution if the

determinant of the matrix A is not null. In this case, the solution is theoretically given with the inverse matrix

of A, i.e. x = A−1b. However, explicitly forming the matrix A−1 is generally not the best way of solving a

linear system of equations (Golub and Van Loan, 1996a). This stems from the fact that a direct computation

of the inverse matrix is numerically unstable. Besides, it is not possible to exploit sparse properties of a matrix

when explicitly forming the inverse matrix. A very basic tool that can be used to solve a linear system is the

Gauss elimination algorithm (Golub and Van Loan, 1996a; Press et al., 1992). The main advantage of this

algorithm is that it does not need strong assumption on the matrix of the system (except that it is square and

invertible, of course). Here, we will not give the details of the Gauss elimination algorithm. Instead, we will

present other algorithms more suited to the intended purpose, i.e. optimization algorithms.

The Cholesky factorization. The Cholesky factorization is a method for solving a linear system of equations.

If the matrix A is positive definite, then the Cholesky factorization of A is:

A = RTR, (2.53)

with R ∈ Rn×n an upper triangular matrix with strictly positive diagonal entries. Note that, for example, the

left-hand side of the augmented normal equations used in the iterations of the Levenberg-Marquardt algorithm

is a positive definite matrix. If we substitute the matrix A in equation (2.52) by its Cholesky factorization, we

obtain:

RTRy = b. (2.54)

42 Chapter 2. GENERAL TOOLS

If we note y′ = Ry then solving equation (2.52) is equivalent to successively solving the two linear systems

RTy′ = b and Rx = y′. This is easily and efficiently done using a back-substitution process because of the

triangularity of the matrices R and RT.

Although efficient, this approach works only if the problem is well-conditioned. If not, some of the diagonal

entries of the matrix R are close to zero and the back-substitution process becomes numerically unstable. In

practice, the Cholesky factorization is particularly interesting for sparse matrices. For instance, the package

cholmod of (Davis and Hager, 1999), dedicated to sparse matrices, heavily uses Cholesky factorization.

2.2.2.9 QR Factorization

We now give a method based on the QR factorization for solving an over-determined linear least-squares mini-

mization problem of the form:

min
x
‖Fx− y‖2, (2.55)

with F ∈ Rm×n, m ≥ n, and y ∈ Rm. As we have seen in section 2.2.2.6, solving problem (2.55) amounts to

solve the normal equations, namely:

FTFx = FTy. (2.56)

The QR factorization of the matrix F is:

F = QR =
[

Q1 Q2

]
[

R1

0

]

, (2.57)

with Q ∈ Rm×m an orthonormal matrix, Q1 ∈ Rm×n, Q2 ∈ Rm×(m−n), and R1 ∈ Rn×n an upper triangular

matrix. If the matrix F has full column rank, then the columns of the matrix Q1 form an orthonormal basis for

the range of F (Golub and Van Loan, 1996b). If we replace the matrix F by its QR factorization into the normal

equations, we obtain:
[

RT
1 0

]

QTQ

[

R1

0

]

x =
[

RT
1 0

]
[

Q1

Q2

]

y. (2.58)

This last expression can be simplified using the fact that the matrix Q1 is orthonormal:

R1x = QT

1 y. (2.59)

As for the approach based on the Cholesky factorization, the linear system of equation (2.59) can be easily

solved with a back-substitution algorithm.

2.2.2.10 Singular Value Decomposition

The singular value decomposition is a tool that can be used to solve certain linear least-squares minimization

problems. The singular value decomposition of a real matrix A ∈ Rm×n is given by:

A = UΣVT, (2.60)

with U ∈ Rm×n a unitary matrix, Σ ∈ Rn×n a diagonal matrix with non-negative elements on its diagonal, and

V ∈ Rn×n a unitary matrix. The diagonal entries of Σ, named the singular values, are generally sorted from

the largest to the smallest. If the matrix A has full column rank then the diagonal entries of Σ are all strictly

positive. In fact, the number of strictly positive elements on the diagonal of Σ is the rank of the matrix A.

2.2 BASICS ON CONTINUOUS OPTIMIZATION 43

Non-homogeneous linear least-squares. Once again, we consider the problem of minimizing the over-

determined linear least-squares function ‖Fx − y‖2. This least-squares problem is called non-homogeneous

because there exists a non-null right-hand side y. The singular value decomposition can be used to solve

this problem. Indeed, if we replace the matrix F in the normal equations by its singular value decomposition

F = UΣVT, we obtain:

VΣUTUΣVTx = VΣUTy. (2.61)

Using the fact that U is a unitary matrix and that Σ is a diagonal matrix, we can write that:

x = VΣ−1UTy. (2.62)

In other words, we have that F† = VΣ−1UT. As for the other algorithms, the computational complexity of

this method is in O(n3). The main advantage of the SVD approach for linear least-squares problem is when

the matrix F is almost rank deficient. In this case, the smallest singular values in Σ are very close to zero.

Therefore, a simple computation of Σ−1 would lead to unsatisfactory results (the inverse of a diagonal matrix

being obtained by taking the reciprocals of the diagonal entries of Σ). In this case, one can replace the inverse

matrix Σ−1 in equation (2.62) by the pseudo-inverse matrix Σ†. The pseudo-inverse of a diagonal matrix

Σ = diag
(

σ1 · · · σn′ 0
)

∈ Rn×n (with n′ ≤ n) is the matrix Σ† = diag
(

1
σ1
· · · 1

σn′
0
)

∈ Rn×n.

Homogeneous linear least-squares. We now consider the case of the homogeneous linear least-squares min-

imization problem. It corresponds to the following minimization problem:

min
x

m∑

i=1

(fi(x))
2, (2.63)

where the functions fi : Rn → R are linear with respect to x, i.e. ∃fi ∈ Rn such that fi(x) = fTi x for all

i ∈ J1,mK. This minimization problem can be written in matrix form:

min
x
‖Fx‖2, (2.64)

with F =
[

f1 . . . fm

]T

∈ Rm×n. An obvious solution to problem (2.64) is x = 0. Of course, this dummy

solution is generally not interesting. Instead of solving problem (2.64), one replaces it with the following

constrained optimization problem:

min
x
‖Fx‖2

subject to ‖x‖ = 1.
(2.65)

Problem (2.65) is easily solved using the singular value decomposition. Indeed, let F = UΣVT be the singular

value decomposition of F. If we write x′ = VTx, then problem (2.65) is equivalent to:

min
x′

‖Σx′‖2

subject to ‖x′‖ = 1.
(2.66)

This stems from the fact that the matrices U and V are unitary and, consequently, we have that ‖UΣVTx‖ =
‖ΣVTx‖ and ‖x′‖ = ‖VTx‖ = ‖x‖. Remind the fact that for a full column rank matrix the diagonal elements

of Σ are σ1 ≥ . . . ≥ σn > 0. Therefore, an evident minimizer of problem (2.66) is x′ =
(

0 · · · 0 1
)T

.

Finally, since we have that x = Vx′, the solution of our initial homogeneous linear least-squares problem is

44 Chapter 2. GENERAL TOOLS

given by the last column of the matrix V. If the matrix F has not full column rank, then the same principle can

be applied except that one may take the column of V corresponding the last non-zero singular value.

2.2.2.11 Iteratively Reweighed Least Squares

The method of Iteratively Reweighed Least Squares (IRLS) is an optimization algorithm designed to minimize

a function f : Rn → R of the form:

f(x) =
n∑

i=1

w(x)‖fi(x)− yi‖2, (2.67)

where w is a function from Rn to R. For instance, such a cost function arises when M-estimators are involved.

IRLS is an iterative method for which each step involves the resolution of the following weighted least squares

problem:

x(k+1) = argmin
x

n∑

i=1

w(x(k))‖fi(x)− yi‖2. (2.68)

2.2.2.12 Golden Section Search

We now arrive at the last optimization algorithm presented in this document: the golden section search al-

gorithm. This algorithm allows one to minimize a monovariate function f : R → R. The minimization

necessarily takes place over a given interval. The function f has to be continuous and unimodal on this interval

for the golden section search algorithm to work. It can be used as the line search procedure for the previously

presented algorithm of this section. It was first proposed in (Kiefer, 1953) and the refined in (Avriel and Wilde,

1966). The general principle of the golden section search is to bracket the location of the minimum of f . This is

achieved by updating and refining a set of 3 locations x1 < x2 < x3 with the assumptions that f(x2) ≤ f(x1)

and f(x2) ≤ f(x3). These locations are then updated according to the value taken by f at a new point x4

such that x2 < x4 < x3. If f(x4) < f(x2) then the 3 locations become x2 < x4 < x3. Otherwise, i.e. if

f(x4) ≥ f(x2), they become x1 < x2 < x4. The principle is illustrated in figure 2.9.

(a) (b)

Figure 2.9: Illustration of an update of the golden section search algorithm. (a) If the function to optimize is uni-modal and

if f(x4) > f(x2) then the minimum of the function is necessarily located on the interval [x1, x4]. (b) On the contrary, if

f(x4) < f(x2) then the minimum of the function lies in the interval [x2, x3].

As just described, the update of the 3 locations implies that the minimum of a function will be located either

in the interval [x1, x4] or [x2, x3]. The principle of the golden section search algorithm is to impose the length

of these two intervals: they must be equal. It implies that we must have:

x3 − x4 = ϕ(x4 − x2), (2.69)

2.3 PARAMETRIC MODELS OF FUNCTION 45

where ϕ is the golden ratio, i.e. ϕ = 1+
√
5

2 .

2.3 Parametric Models of Function

As it will be seen in the rest of this document, the vast majority of the problems treated in this thesis may be

cast into parameter estimation problems. The fundamental concepts underlying such problems will be detailed

in chapter 3. For now, let us just say that parameter estimation problems consists in finding the parameters

of a parametric model so that the resulting function is ‘close to’ a given set of data points. In a nutshell, a

parametric model of function is a function whose exact behaviour is controlled by a set of parameters. For

instance, a polynomial can be considered as a parametric model of function with the polynomial coefficients as

parameters. A more precise definition of the parametric model of function will be given in section 3.1.1.1. In

this section, we detail some particular but generic parametric models of function which are the ones mostly used

in this document. Although we do not pretend to be fully exhaustive, we spend time in explaining the basics on

splines and B-splines. The interested reader can deepen this topic with this readings (de Boor, 2001; Dierckx,

1993; Farin, 1997; Malgouyres, 2005). We also present other useful parametric models such as rational splines

and radial basis functions.

2.3.1 Splines

The word spline is a generic term that designates a parametric model of function. This word has been used in

many contexts (computer aided geometric design, approximation theory, computer vision) with a meaning that

slightly varies from one domain to the other. In this section, we first fix the meaning of the word spline as we

understand it in this document. We then give the basic mathematical definition of a mono-dimensional spline.

We also give the fundamental properties of such objects.

Historical note. The term spline originally designated a physical object used to draw smooth curves. It was

widely used by engineers and architects to craft blue prints. It was made of a flexible strip that was fixed at

some points. An illustration of such splines is given in figure 2.10. Of course, in this document we will be more

interested in the mathematical form of the splines than in their physical counterparts.

Figure 2.10: An historical spline (credits: Pearson Scott Foresman).

General definition. In its most general definition, a spline is a piecewise polynomial function. Note that

this definition is independent of any particular form. For instance, the B-splines (see section 2.3.2) are just a

particular representation of a spline. Note also that this basic definition does not make any assumption on the

46 Chapter 2. GENERAL TOOLS

continuity of the function. In particular, the polynomial pieces of a spline may or may not satisfy continuity

conditions at their junction. Examples of splines are given in figure 2.11.

0

0.25

0.5

0.75

1

0.5

1

1.5

2

2.5

Figure 2.11: Examples of spline functions. A spline is a piecewise polynomial function. The width of each piece is not

necessarily the same. In the most general definition of a spline, there may (top) or may not (bottom) be continuity conditions

between the polynomial pieces. Top: a spline made of 6 polynomial pieces of degree 2 with C1
continuity over the whole domain

[k0, k6]. Bottom: a spline made of 5 polynomials of various degrees with various continuity conditions at the knots.

Mathematical definition. Mathematically speaking, several elements are required to define a spline: a de-

gree, a set of contiguous intervals, and, of course, polynomials on each of this intervals. The degree of a spline,

denoted d in this section, is the maximal degree of the polynomial pieces. Equivalently, one may talk about the

order of the spline, which is d + 1 for a spline of degree d. The intervals are defined using a knot sequence

k0 < . . . < kn which is a strictly increasing sequence of n+ 1 real numbers. The values k0, . . . , kn are called

the knots. These knots defines n knot intervals [ki, ki+1] for i ∈ J0, n − 1K. On each knot interval, a spline

of degree d is defined by a polynomial of degree at most d. The natural definition domain of a spline is the

interval [k0, kn]. For instance, a spline s : [k0, kn]→ R may be defined as:

s(x) =

d∑

i=0

pij(x− kj)i

if x ∈ [kj , kj+1[and j ∈ J0, n− 2K

if x ∈ [kn−1, kn]
(2.70)

2.3 PARAMETRIC MODELS OF FUNCTION 47

where the values pij for i ∈ J0, dK are the coefficients of the j-th polynomial piece (j ∈ J0, n − 1K). Note

that equation (2.70) is just a particular way of expressing a spline. It is the most basic form for expressing the

fact that s is a piecewise polynomial function. Other more interesting representations will be given later in this

chapter.

In addition to these basic elements, the polynomial pieces may be stitched to each other using continuity

conditions. These conditions are written:

lim
k→ki
k<ki

∂ls

∂xl
(k) = lim

k→ki
k>ki

∂ls

∂xl
(k) i ∈ J1, n− 1K, l ∈ J0, ci − 1K, (2.71)

where ci ∈ J0, d−1K is the required class of continuity at the knot ki and where the convention ∂0s
∂x0 = s is used.

A common choice is c1 = . . . = cn−1 = d − 1. We name this choice the full continuity constraints. In this

case, the spline s belongs to Cd−1([k0, kn]), which is the maximal continuity class for a piecewise polynomial

function.

Number of degrees of freedom. Let us note Sd(k0, . . . , kn) the vector space of the splines of degree d with

knots k0, . . . , kn. Let s be a spline of Sd(k0, . . . , kn). The number of degrees of freedom of the spline s is

the dimension of the vector space Sd(k0, . . . , kn). It is the total number of polynomial coefficients minus the

number of continuity conditions. In the full continuity case, the number of degrees of freedom of a spline is

n(d+ 1)− (n− 1)d = n+ d.

Truncated power functions. A particular way to expressing the splines relies on the truncated power func-

tions. A truncated power function is denoted with the symbol +. It is defined as:

(x− c)k+ =

(x− c)k if x ≥ c
0 otherwise.

(2.72)

It can be proved (Dierckx, 1993) that any spline s of Sd(k0, . . . , kn) can be uniquely written as a linear combi-

nation of the canonical monomial xi and of the truncated power functions of degree d:

s(x) =

d∑

i=0

αix
i +

n−1∑

i=1

βj(x− ki)d+, (2.73)

where {αi}di=0 and {βi}n−1
i=1 are n + d real values. The n + d polynomials 1, x, . . . , xd, (x − k1)d+, . . . , (x −

kn−1)
d
+ form a basis of the vector space Sd(k0, . . . , kn). However, this family of functions constitutes an

ill-conditioned basis which makes the expression of equation (2.73) numerically unstable. Therefore, equa-

tion (2.73) is not suited for computations. In the next section, we explore another representation of splines, the

so-called B-splines, which is more convenient for practical use.

2.3.2 The B-spline Representation

In this section, we give the definitions and the properties of the parametric model mostly used in this thesis:

the splines expressed as a linear combination of B-splines. The B-splines are a set of piecewise polynomial

functions that defines a suitable basis for the vector space of the splines (the B in B-spline stands for Basis). As

remarked by (de Boor, 1972), they were first introduced in (Curry and Schoenberg, 1947; Schoenberg, 1946).

We start this section with the construction and the definitions of the basic building block, i.e. the B-spline

48 Chapter 2. GENERAL TOOLS

functions. We then give the details on the general representation of splines with the B-splines basis functions.

We end this section with a special case of particular interest: the uniform cubic B-splines.

2.3.2.1 The B-Splines Functions

The B-spline Ni,d+1 of degree d (order d + 1) with knots ki < . . . < ki+d+1 is defined recursively with the

following relation:

Ni,d+1(x) =
x− ki
ki+d − ki

Ni,d(x) +
ki+d+1 − x
ki+d+1 − ki+1

Ni+1,d(x), (2.74)

Ni,1(x) =

1 if x ∈ [ki, ki+1[

0 otherwise.
(2.75)

These formula are only one way of defining the B-splines. They are called the Cox de Boor recursion formula.

One may remark from equation (2.74) and equation (2.75) that B-splines are themselves splines.

Properties. Here comes a list of the most basic properties of the B-spline functions. These properties were

extensively studied in (de Boor, 2001; Schumaker, 1981).

Positivity. The B-splines are everywhere positive or null:

Ni,d+1(x) ≥ 0 ∀x ∈ R. (2.76)

Local support. The support of the B-splines is bounded, i.e. they are non-zero only over a their natural

definition domain:

Ni,d+1(x) = 0 if x 6∈ [ki, ki+d+1] (2.77)

Boundary values.

Ni,d+1(ki) = Ni,d+1(ki+d+1) = 0 (2.78)

Continuity. For a given degree d, the B-splines belongs to the highest possible class of continuity for a

piecewise polynomial function:

Ni,d+1 ∈ Cd−1([ki, ki+d+1]) (2.79)

Derivatives of a B-spline. The derivative of a B-spline of degree d is a linear combination of B-splines

of degree d− 1:

N ′
i,d+1(x) = d

(
Ni,d(x)

ki+d − ki
− Ni+1,d(x)

ki+d+1 − ki+1

)

(2.80)

Coincident knots. So far, we made the assumptions that the knots were all different. The definition of the

B-splines may be extended to coincident knots. This allows one to weaken the continuity conditions at the

position of these coincident knots. Let r knots in the set {ki, . . . , ki+d+1} be coincident at the point c (with

2 ≤ r ≤ d + 1). The B-spline have continuous derivatives up to order d − r at c and is discontinuous at c if

r = d+ 1. Figure 2.12 illustrates the influence of coincident knots on the B-spline basis functions.

2.3 PARAMETRIC MODELS OF FUNCTION 49

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

(a) (b)

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

(c) (d)

0
0.2
0.4
0.6
0.8
1

0
0.2
0.4
0.6
0.8
1

(e) (f)

Figure 2.12: Influence of coincident knots on a B-spline basis function. Here we consider a B-spline of degree d = 3. The

knots k0, . . . , k4 form a strictly increasing sequence in the sub-figures (a) to (e). In sub-figure (f), k1, k2, and k3 are coincident.

In (a-e), the B-spline belongs to C3
. In (f), it is only Cd−3 = C0

at the position of the knot k1 = k2 = k3.

Multiple knots, breaks. Let k0 ≤ . . . ≤ kn be a knot sequence with coincidence allowed. The break

sequence b0 < . . . < bm (with m ≤ n) is the strictly increasing sequence of real numbers build by removing

the redundancies from the knot sequence:

b0 = k0 < . . . < bi = ki1 = . . . = ki1+r1 < . . . < bj = ki2 = . . . = ki2+r2 < . . . < bm = kn. (2.81)

The multiplicity of the breaks bi is the number of knots that corresponds to the break bi. It is denoted with the

operator mult. For instance, in equation (2.81), we have that mult(bj) = r2 + 1.

2.3.2.2 Splines as Linear Combinations of B-Splines

Splines can be written as a linear combination of B-splines basis functions. Such splines are often referred to

as B-splines. This may be a bit confusing but it is shorter than ‘splines as a linear combination of B-splines’.

We will use this language shortcut in the rest of this document. The expression ‘B-spline basis function’ will

be utilised to distinguish between the splines and the basis functions. Let us take back the knot sequence we

used when we introduced the spline functions (see section 2.3.1): k = k0 ≤ . . . ≤ kn
3. Since a single B-

spline of degree d spans d+ 1 knot intervals, n− d independent B-splines can be defined using k. The vector

space Sd(k0, . . . , kn) has n+ d dimensions. Therefore, we need 2d supplemental B-splines to form a basis of

Sd(k0, . . . , kn). These B-splines may be defined by adding 2d extra knots to the initial knot sequence satisfying

the following conditions:

k−d ≤ . . . ≤ k−1 ≤ k0,
and kn ≤ kn+1 ≤ . . . ≤ kn+d.

(2.82)

3From now on, multiple knots are allowed.

50 Chapter 2. GENERAL TOOLS

These additional knots are named the boundary knots. They must satisfy the conditions of equation (2.82)

but may be otherwise arbitrary. There exists some common choice for defining these boundary knots, later

reviewed in this document.

A B-spline s is uniquely written as a linear combination of the n + d basis functions Ni,d+1 for i ∈
J−d, n− 1K:

s(x) =

n−1∑

i=−d

wiNi,d+1(x), (2.83)

where the real values wi (i ∈ J−d, n − 1K) are named the weights (or the coefficients) of the B-spline. For

vector-valued splines (see after), the entities that corresponds to the weights will be called the control points.

Note that equation (2.83) will often be written in vector notation:

s(x) = nT

xw = wTnx, (2.84)

where wT =
(

w−d . . . wn−1

)

and nT
x =

(

N−d,d+1(x) . . . Nn−1,d+1(x)
)

.

Coincident knots. The dimension of the vector Sd(k0, . . . , kn) is reduced with coincident knots. Indeed, it

corresponds to the number m (m ≤ n) of break intervals multiplied by the number of polynomial coefficients

on each break interval (d + 1) minus the number of continuity conditions. This is consistent with the fact that

the order of continuity of a spline is reduced at the location of coincident knots. Indeed, for a break bi with

multiplicity ri, we have d− ri continuity constraints instead of d:

∂ls

∂xl
(k−i) =

∂ls

∂xl
(k+i) l ∈ J0, d− riK. (2.85)

Properties. We now list some basic properties of the B-splines.

Definition domain. From equation (2.82) and equation (2.83), we see that a B-spline can take non-zero

values over the interval]k−d, kn+d[. Therefore, the interval [k−d, kn+d], named the full definition domain,

seems to be a good candidate for the definition domain of the spline. This is not always a good choice. Indeed,

if there are no coincident knots, the boundary values of the splines will always be zero. Besides, for arbitrary

knots, some interesting properties of the B-splines will not be satisfied on [k−d, k0[and]kn, kn+d]. For instance,

it is the case for the property of the partition of unity (see below). Besides, on the interval [k0, kn], a B-spline is

always the combination of exactly d+1 non-zero basis functions (except maybe at the knot position or if some

weights are zero). This is not true on [k−d, k0[and]kn, kn+d]. Consequently, the definition domain [k0, kn] is

often a more natural choice than [k−d, kn+d]. We name this interval the natural definition domain. Besides, it

is more consistent with the general definition of a spline, as explained in section 2.3.1.

Partition of unity. The B-spline basis functions have the interesting property of forming a partition of

unity. This means that we have:

n−1∑

i=−d

Ni,d+1(x) = 1 ∀x ∈ [k0, kn]. (2.86)

This property is the reason why the B-spline basis functions are often qualified of normalized. Figure 2.13

illustrates the partition of unity property.

2.3 PARAMETRIC MODELS OF FUNCTION 51

0

1

Natural definition domain

At a given point, there are at most d+1 non-zero B-spline basis functions

Figure 2.13: Some interesting properties of the B-splines. On the natural definition domain of the B-spline ([k0, k4] on this

figure), the B-spline basis functions sum up to one (partition of unity). In this example, we use B-splines of degree 2. The

horizontal segment below the abscissa axis represents the domain of influence of the B-splines basis function, i.e. the interval

on which they are not null. At a given point, there are at most d+ 1 non-zero B-spline basis functions (compact support).

Limited influence of the weights. Another interesting property of the B-splines is the fact that the in-

fluence of the weights is spatially limited. This comes from the fact that the B-spline basis functions have a

limited support. Consequently, for a given point x, the value s(x) is always the linear combination of at most

d + 1 non-zero basis functions. This is illustrated on figure 2.13. For reasons that will become clear later in

this document, this property allows one to design efficient procedures for parameter estimation with splines.

For now, let us just say that it is obviously faster to compute the sum of d + 1 numbers than the sum of d + n

numbers (especially when n is much more bigger than d, which is often the case in practice).

Representational power. By definition, it is clear that a B-spline is a spline. Reciprocally, it can also

be shown that any spline of Sd(k0, . . . , kn) can be represented by a B-spline. This property is sometimes

considered as the fundamental theorem of the B-splines (de Boor, 2001).

Position of the weights. At this point, the reader who has a minimal background on splines and B-splines

might wonder where are the ‘control points’ of the B-spline. This is generally a confusing point. As we

mentioned earlier, the term ‘control point’ is more conveniently used for vector-valued splines (for instance,

a parametric curve embedded in a 2D or 3D space). In this case, talking about the position of the control

points has a meaning (and, besides, some interesting properties can be linked to these positions). In the mono-

dimensional case, and more generally in the scalar-valued case, speaking about the position of the weights does

not make much sense. Indeed, the weight wi is just a scalar that multiplies the i-th basis function. It is thus

linked to the whole interval on which the basis function Ni,d+1 is non null ([ki, ki+d]). In other words, the

weight wi may be seen as an ordinate without an abscissa. If one really wants to associate a spatial information

to the weight wi, it might be an horizontal segment of line ranging from ki to ki+d for the abscissa and of

ordinate wi. This is illustrated in figure 2.14.

Linearity. Although the expression s(x) is not linear with respect to the abscissa x, it is linear with

respect to the weights. This is of particular interest in parameter estimation since in such problems we are

interested in estimating the weights, not the abscissa. A linear relation generally leads to easier computations.

52 Chapter 2. GENERAL TOOLS

-5.5

5

5.5

1

1.5

2

Figure 2.14: A possible graphical representation of the weights of a mono-dimensional B-spline. In this illustration, we take

the same knots and the same degree than in figure 2.13 (in other words, the same B-spline basis functions). The horizontal

segments represents the weights applied to each one of the basis functions (the heights are equal to the weights). The dashed

curves are the weighted basis functions, i.e. the basis functions multiplied by their corresponding weight. The solid line is the

sum of the weighted basis functions, i.e. the final B-spline.

Derivatives. Let us temporarily write explicitly the dependency of s in the weights wT =
(

w−d . . . wn−1

)

,

i.e. s(x) = s(x;w). The derivatives of the B-spline s with respect to x is easily computed:

∂s

∂x
(x;w) =

n−1∑

i=−d

wi
∂Ni,d+1

∂x
(x). (2.87)

Since the derivative of a B-spline basis function of degree d is a linear combination of B-spline basis functions

of degree d − 1 (see equation (2.80)), the derivative of a B-spline is a B-spline with one less degree than the

original.

The ‘derivative’, or more precisely the gradient, of s with respect to the weights w is given by:

∇
Ts(x;w) =

(

N−d,d+1(x) . . . Nn−1,d+1(x)
)

. (2.88)

The gradient of a spline with respect to the parameters w plays an important role in parameter estimation since

it is used by optimization algorithms.

Coincident boundary knots. The coincident boundary knots are a common choice for the supplemental

boundary knots k−d, . . . , k−1 and kn+1, . . . , kn+d. It is defined by:

k−d = . . . = k0,

and kn = . . . = kn+d.
(2.89)

In this case, the full definition domain of the B-spline [k−d, kn+d] coincides with the natural definition do-

main [k0, kn]. The boundary values of the splines on the full definition domain are not 0 anymore but 1.

Therefore, the partition of unity property is satisfied over the entire definition domain. This particular choice

of boundary knots is illustrated in figure 2.15. Note that there exists other choices for the boundary knots. For

instance, one may use arbitrary knots at his convenience or periodic boundary knots (Dierckx, 1993). This later

choice is particularly well suited for approximating periodic functions with B-splines. We do not detail this

choice here because we do not use it in this document.

2.3.2.3 Uniform Cubic B-Splines

The Uniform Cubic B-Splines (UCBS) are a special case of B-splines which are particularly interesting for

their simplicity and efficiency. As the name indicates, they are B-splines of degree 3. This degree is a good

2.3 PARAMETRIC MODELS OF FUNCTION 53

Figure 2.15: B-spline with coincident boundary knots. In this case, the partition of unity property is satisfied over all the full

definition domain which is the same as the natural definition domain.

compromise between flexibility and simplicity of the induced computations. The word uniform means that all

the knots are equally spaced. In this case, the B-splines basis functions are just shifted copies of each others:

Nj,d+1(x) = Ni,d+1 (x− (j + i)s) ∀(i, j) ∈ J−d, n− 1K2, (2.90)

where s is the width of a knot interval (i.e. s = ki+1 − ki for all i ∈ J−d, n − 2K). Figure 2.16 shows a set

of B-spline basis functions in the UCBS case. For the sake of simplicity, we drop the index that indicates the

order in the notation of the B-spline basis functions, i.e. Ni(x) = Ni,4(x).

0

1

Natural definition domain

Figure 2.16: The B-spline basis functions for UCBS are shifted copies of each others. On the natural definition domain ([k0, k3]
on this figure), there are always 4 non-zero basis functions.

Notation, definitions

Normalized abscissa. When dealing with UCBS, it is often more convenient to work with normalized

abscissa than with original abscissa. The normalized abscissa consists in scaling and translating the ab-

scissa so that the knot k0 coincides with 0 and so that the width of the knot intervals equals 1. Let k =

{k−3, . . . , k0, . . . , kn, . . . kn+3} be the knot sequence. The normalized abscissa of the point x, denoted ν(x),

is defined by:

ν(x) =
x− k0
s

, (2.91)

54 Chapter 2. GENERAL TOOLS

where s is the original width of a knot interval, i.e. s = ki+1 − ki (i ∈ J−3, n+ 2K).

Knot interval. The knot interval in which a point x lies is denoted ι(x). ι is a function from [k−3, kn+3]

to J−3, n+ 2K defined as follows:

ι(x) =

⌊ν(x)⌋ if x ∈ [k−3, kn+3[

n+ 2 if x = kn+3.
(2.92)

Normalized 0-based abscissa. The normalized 0-based abscissa of x is the number o(x) such that:

o(x) = ν(x)− ι(x). (2.93)

It corresponds to the abscissa of the point x in a local coordinate frame so that the lower bound of the knot

interval in which the point x lies coincides with 0 and of width 1.

UCBS basis functions. A closed form expression of the UCBS basis functions can be computed by unrolling

the Cox-de Boor recursive relations that defines the B-spline basis functions (equation (2.74)). Without loss

of generality, we consider that the knot sequence is normalized and 0-based. If it was not the case, one would

just have to replace x by o(x) in the right-hand side of the following equations. The i-th basis function of the

UCBS is expressed as:

Ni(x) =

b3(x) =
1
6x

3 if x ∈ [ki, ki+1[

b2(x) =
1
6

(
−3x3 + 3x2 + 3x+ 1

)
if x ∈ [ki+1, ki+2[

b1(x) =
1
6

(
3x3 − 6x2 + 4

)
if x ∈ [ki+2, ki+3[

b0(x) =
1
6

(
−x3 + 3x2 − 3x+ 1

)
if x ∈ [ki+3, ki+4[

0 otherwise.

(2.94)

Figure 2.17 gives an illustration of the B-spline basis function for the UCBS. The evaluation of a B-spline at a

point x is then equivalent to a blending of the four weights closest to the point x. The blending functions are

the four polynomials b0, . . . , b3 of degree 3 that constitutes the B-spline basis function. In other words, we have

that:

s(x) =
3∑

i=0

wι(x)+ibi(o(x)) (2.95)

Vector notation. As any B-spline, a UCBS can be written in vector notation:

s(x) = nT

xw, (2.96)

with nx =

0ι(x)

b0(o(x))
...

b3(o(x))

0n−ι(x)−4

and w =

w−d

...

wn−1

. (2.97)

Remark that the vector nx has at most 4 non-zeros entries, whatever the size of the knot vector (i.e. the number

of weights).

2.3 PARAMETRIC MODELS OF FUNCTION 55

(a) (b)

Figure 2.17: Anatomy of a B-spline basis function of UCBS. (a) A B-spline basis function of a UCBS is made of four pieces,

each one of which being a polynomial of degree 3. (b) On a given knot interval, the value of a B-spline can be viewed as the

blending of the four adjacent coefficients of the B-spline with weights given by the basis functions.

Matrix notation. The matrix notation is another common notation for the UCBS. It explicitly reveals

that, on a given knot interval, a UCBS is a polynomial function of degree 3 with coefficients obtained by

blending the weights of the 4 non-zero B-spline basis functions that corresponds to this knot interval. As we

will see later in this manuscript, the matrix notation can make easy some computations that would have been

more difficult otherwise. It is given by:

s(x) =
(

o(x)3 o(x)2 o(x) 1
)

MG

wι(x)

wι(x)+1

wι(x)+2

wι(x)+3

, (2.98)

where MG is known as the geometric matrix (Malgouyres, 2005) and is defined by:

MG =
1

6

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

. (2.99)

Although we do not use them in this document, other type of splines can be written in the form of equation (2.98)

just by changing the geometric matrix. For instance, this is the case for the cubic Hermite splines (Farin, 1997).

2.3.2.4 Natural Splines

One of the most important application of the splines is to interpolate a sparse set of data point. Let {xi ↔ yi}ni=1

be the data set. The natural spline is the ‘least bended’ function that interpolates the data set. It is the solution

to the following variational problem:

min
f∈C2

B[f]

subject to f(xi) = yi ∀i ∈ J1, nK
(2.100)

where B is the functional that gives the bending energy of a function over its definition domain Ω (here,

Ω =
[
min
i
xi,max

i
xi
]
). It is defined as:

B[f] =

∫

Ω

(
∂2f

∂x2
(x)

)2

dx (2.101)

56 Chapter 2. GENERAL TOOLS

The solution to problem (2.100) is a B-spline of degree 3 with knots identical to the abscissa of the data points

(de Boor, 2001).

2.3.2.5 B-Splines in Higher Dimensions

In this section, we extend the B-splines as presented in the previous section to higher dimensions. Note that for

the sake of simplicity, we restrict our study to B-splines although most of the concept presented in this section

could be applied to arbitrary splines. We first show how vector-valued B-splines can be defined. We will not

spend much time on these aspects since they are barely used in the rest of this document. We then consider

a case of greater importance in this thesis: the bivariate B-splines built using the tensor-product of univariate

B-splines.

Vector-Valued B-Splines Vector-valued B-splines can easily be constructed from scalar-valued B-splines by

replacing the weights with control points. A vector-valued B-splines S : R→ Rm is thus defined by:

S(x) =
n−1∑

i=−d

piNi,k+1(x), (2.102)

where the pi are the control points of the B-splines. They are vector of Rm. With m = 2, equation (2.102) is

the equation of a parametric curve embedded in a plane. With m = 3, equation (2.102) describes a parametric

curve embedded in space. An illustration of vector-valued (with m = 2) is given in Figure 2.18.

Figure 2.18: A vector-valued B-splines (blue thick curve) embedded in the 2D plane. We use a B-spline of degree 3 with a

uniform knot sequence {k−3, . . . , k10}. The blue ticks represent the position of the knots (note that we only consider the

natural definition domain [k0, k7]). The black dots are the control points of the curve (from p−3 to p6). The solid grey line is

the polygon of control. The dashed grey line is the convex hull of the control points.

Contrarily to the scalar-valued case, it makes sense to speak about the position of the control points. While

a weight wi could be seen as an ordinate without an abscissa, a control point pi ∈ Rm completely defines a

point in m dimensions. Besides, some properties can be attached to the position of the control points. The set

of all the control points P = {pi}n−1
i=−d defines what is called the polygon of control. An interesting property is

that the B-spline is always included in the convex hull of the polygon of control P .

Bivariate B-Splines One of the most simple approach to extend the univariate B-splines to two variables is

known as the tensor product B-spline. The use of the expression tensor product will become clear later as we

2.3 PARAMETRIC MODELS OF FUNCTION 57

will see that it is related to the tensor product of two matrices (also known as the Kronecker product). We

restrict our study of the tensor product splines to the case of two variables but the same principles could be

applied for higher dimensions (but with a dramatic increase in the notation burden). Let {k−dx , . . . , knx+dx}
and {l−dy , . . . , lny+dy} be two knot sequences. The (scalar-valued bivariate) tensor product B-spline of degree

dx along the x-direction and dy along the y-direction is the function s from [k0, knx] × [l0, lny]
4 to R defined

as:

s(x, y) =

nx−1∑

i=−dx

ny−1
∑

i=−dy

wijNi,dx+1(x)Nj,dy+1(y). (2.103)

The main advantage of the tensor product approach is that most of the properties of the univariate B-splines

are still true in the bivariate case. This is true, for instance, for the partition of unity property, or for the local

support of the basis functions.

The definition of equation (2.103) can be interpreted in different ways. We give two of these interpretations

in the next two paragraphs.

Linear combination of bivariate basis functions. One can consider the tensor product B-splines as a linear

combination of the bivariate basis functions Bi,j (for i ∈ J−dx, nx − 1K and j ∈ J−dy, ny − 1K) which are

bivariate polynomials of degree dx in x and dy in y defined as:

Bi,j(x, y) = Ni,dx+1(x)Nj,dy+1(y). (2.104)

Given the properties of the univariate B-spline basis functions, the basis function Bi,j is non-zero only over

the interval [ki, ki+dx+1] × [lj , lj+dy+1]. The construction of the tensor product B-spline basis functions is

illustrated in figure 2.19.

Figure 2.19: Construction of a bivariate B-spline basis function (mesh grid) as the tensor product of two univariate B-spline

basis functions (blue and red curves). In this illustration, we took dx = dy = 3 and uniformly spaced knots. The value of the

tensor product B-spline basis function Bi,j at the point (x, y) is the product of the univariate basis function Ni,dx and Nj,dy

evaluated at the points x and y respectively.

Relation to the tensor product of matrices. On a sub-domain [ki, ki+1], a univariate spline s of degree d

is a single polynomial of degree d. This can be written in vector form as follows:

s(x) = aTx =
(

ad . . . a1 a0

)(

xd . . . x 1
)T

, (2.105)

4Or [k−dx , knx+dx]× [l−dy , lny+dy] if we consider the full definition domain instead of the natural definition domain.

58 Chapter 2. GENERAL TOOLS

where the values {ai}di=0 are the coefficients of the polynomial. On a sub-rectangle [ki, ki+1] × [lj , lj+1], a

tensor product spline s is given by the tensor (or Kronecker) product of a polynomial of degree dx in x and dy

in y. Let px and py be those two polynomials:

px(x) = aTx =
(

adx . . . a1 a0

)(

xdx . . . x 1
)T

, (2.106)

and py(y) = bTy =
(

bdy . . . b1 b0

)(

ydy . . . y 1
)T

. (2.107)

The fact that a tensor product spline is the tensor product of two univariate polynomial can be seen from the

following identity:

(aTx)⊗ (bTy) = (aT ⊗ bT)(x⊗ y). (2.108)

Univariate B-splines with varying weights. Another common way of interpreting the basic definition of

equation (2.103) of the tensor product B-spline is to see that each ‘slice’ parallel to the y-axis of the surface

is a univariate spline with weights that are themselves defined by B-splines. It can be seen by rearranging

equation (2.103) as follows:

s(x, y) =

ny−1
∑

j=−dy

vjNj(y) with vj =

nx−1∑

i=−dx

wijNi(x). (2.109)

This point of view is illustrated in figure 2.20.

(a) (b) (c)

(d) (e) (f)

Figure 2.20: The slices of a tensor product B-spline are univariate B-splines with weights on orthogonal B-splines. (a) A tensor

product B-splines with its 6× 5 weights. (b) The 6 weights in the slice of equation y = −1 define a B-spline. (c) All the same

way, the 6 weights in the slice of equation y = 0 define another B-spline. (d) Applying the same principle again and again, we

obtain 5 B-splines. (e) The intersection of this 5 B-splines with the plane of equation x = α gives 5 values. (f) Those values

can be used as the weights of a B-spline which is exactly the profile of the surface for x = α (in the example, α = 2.1).

2.3 PARAMETRIC MODELS OF FUNCTION 59

Vector-valued bivariate B-splines. The extensions of the B-splines to the vector-valued bivariate case can

be combined. In particular, this allows one to define parametric surfaces embedded in a 3D space, which is a

function from R2 to R3. An example of such surface is presented in figure 2.21. We will make use of this type

of surface model for the NURBS-Warps and for the monocular reconstruction of inextensible surfaces.

0246
-2 0 2 4 6 8 10

0

2

4

6

8

Figure 2.21: Example of a parametric surface described with a 3-vector-valued tensor-product B-spline.

Uniform cubic tensor product B-splines. As in the univariate case, bivariate tensor-product B-splines of

degree 3 defined with the help of uniformly distributed knot sequences are of particular interest. Indeed, such

B-splines involves only polynomials of degree 3 which make the computations more stable. Besides, these

computations are simplified in the sense that the bivariate basis functions are shifted copies of each other, as

illustrated in figure 2.22. This type of tensor product B-spline is also abbreviated UCBS.

Figure 2.22: The bivariate tensor product B-spline basis functions for UCBS are shifted copies of each others. Here the full

definition domain is represented, i.e. [k−3, k10]× [l−3, l7].

2.3.3 Non Uniform Rational B-Splines (NURBS)

The rational splines are another parametric model of function that will be used in this document. As the name

may indicate, this model is defined as the ratio of two splines. Rational splines are particularly interesting in

computer vision since they may be seen as the perspective projection of standard splines. Although any type of

60 Chapter 2. GENERAL TOOLS

spline could be used, we focus on a particular type of rational splines that relies on B-splines: the Non-Uniform

Rational B-Splines (NURBS).

2.3.3.1 Basics on NURBS

Definition. We first give the definition of a univariate scalar-valued NURBS. Let k = {k−d ≤ . . . ≤ kd+n} be

a knot sequence, with d the degree of the NURBS. A NURBS is a function model parametrized by d+ n points

pi (i ∈ J−d, n− 1K)), each one of those associated to a strictly positive5 weight wi. Let r : [k0, kn]→ R be the

NURBS. Its expression is given by (Carlson, 2009; Farin, 1997):

r(x) =

n−1∑

i=−d

wipiNi,d+1(x)

n−1∑

i=−d

wiNi,d+1(x)

. (2.110)

The weight wi controls the influence of the point pi. In particular, the bigger wi the closer to pi the NURBS.

This property is illustrated on figure 2.23 for 2-vector-valued NURBS. Another common writing of the NURBS

consists in expressing them as a combination of basis functions with the control points as the coefficients:

r(x) =
n−1∑

i=−d

piRi,d+1(x), (2.111)

where Ri,d+1 is the i-th rational basis function of degree d (order d+ 1):

Ri,d+1(x) =
wiNi,d+1(x)

n−1∑

i=−d

wiNi,d+1(x)

. (2.112)

Although the writing of equation (2.111) seems similar to the definition of the B-splines, it is in fact quite

different. Indeed, the B-spline basis functions were functions independent of the parameters of the B-spline.

On the contrary, the rational basis functions depend on the weights of the NURBS. Consequently, the NURBS

are not linear with respect to the parameters. Even if the concepts behind the rational basis functions and the

B-spline basis functions are different, they still share some properties. This will be reviewed and illustrated in

the paragraph dedicated to the properties of the NURBS.

Higher dimensions. As for the B-splines, the NURBS can be generalized to higher dimensions. Anm-vector-

valued NURBS is obtained from equation (2.110) by replacing the scalars pi by vectors pi ∈ Rm. The weights

remain unchanged and they still control the influence of the control points pi. Multi-variate NURBS are derived

from equation (2.110) using tensor product B-splines for both the numerator and the denominator. For instance,

given two knot sequences {k−dx , . . . , knx+dx} and {l−dy , . . . , lny+dy}, a 3-vector-valued bivariate NURBS (i.e.

5Although it is unusual, it could be negative. Either way, it must be different of zero.

2.3 PARAMETRIC MODELS OF FUNCTION 61

a parametric surface embedded in a 3D space) is the functionR from [k0, knx]× [l0, lny] to R3 defined by:

r(x) =

nx−1∑

i=−dx

ny−1
∑

j=−dy

wijpijNi,dx+1(x)Nj,dy+1(y)

nx−1∑

i=−dx

ny−1
∑

j=−dy

wijNi,dx+1(x)Nj,dy+1(y)

, (2.113)

with wij ∈ R∗
+ and pij ∈ R3 for all (i, j) ∈ J−dx, nx − 1K× J−dy, ny − 1K.

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

-2 -1 0 1 2 3

-1

0

1

2

3

Figure 2.23: Influence of the weights associated to the control points of a 2-vector-valued NURBS.

Perspective projection. Let R be an m-vector-valued univariate NURBS. One may notice that the vector

R(t) are the Cartesian coordinates of the following point expressed in homogeneous coordinates:

n−1∑

i=−d

[

wipi

wi

]

Ni,d+1(x). (2.114)

Equation (2.114) is the exact definition of an (m + 1)-vector-valued B-spline. In other words, an m-vector-

valued NURBS is the perspective projection of an (m + 1)-vector-valued B-spline. This fact is illustrated in

figure 2.24.

62 Chapter 2. GENERAL TOOLS

-5.5
5

5.5 -5.5

5

5.5

1

5

5.5

1

1.5

2

-5.5 5 5.5
-5.5

5

5.5

1

-5.2 0 0.2 0.4

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

(a) (b) (c)

Figure 2.24: An m-vector-valued NURBS is the perspective projection of an (m+1)-vector-valued B-spline. In this illustration,

we considered that m = 2. (a) A 3-vector valued B-spline and its perspective projection into the plane of equation z = 1. (b)

Same as (a) but viewed from the top. (c) The resulting NURBS.

2.3.3.2 Properties

The NURBS share many properties with the B-splines. In addition, they have supplemental interesting proper-

ties. We now give a brief overview of these properties.

Partition of unity. As for the B-splines, the rational basis functions form a partition of unity, i.e. :

n−1∑

i=−d

Ri,d+1(x) = 1 ∀x ∈ [k−d, kn+d]. (2.115)

Note that this property hold true for any set of weights. Figure 2.25 illustrates this property. Note also that for

B-splines this property was satisfied only over the natural definition domain. For NURBS, it is satisfied over

all the full definition domain. This comes from the fact that the rational basis function are normalized and,

therefore, the rightmost (and the leftmost) basis functions does not vanish to zero.

0

0.2�

0.�

0.75

1

Figure 2.25: The rational basis functions form a partition of unity. In this illustration, we use a NURBS from R to R of degree

3 (order 4). The full definition domain [k−3, k10] is shown. Note that contrarily to the B-splines, the rational basis functions

still form a partition of unity outside of the natural definition domain [k0, k7]. This comes from the fact that the rational basis

functions are normalized. In this example, the knots and the weights were randomly chosen. For the same reasons than for the

control points of the univariate B-splines, the weights of the NURBS are represented using segments (shown in dashed lines)

that span the interval of the corresponding rational spline function.

2.3 PARAMETRIC MODELS OF FUNCTION 63

Compact support. The rational basis functions have a compact support:

Ri,d+1(x) = 0 ∀x 6∈ [ki, ki+d+1]. (2.116)

In other word, the i-th control point and the i-th weight influences the shape of the resulting NURBS only over

the d+ 1 knot intervals [ki, ki+d+1].

Continuity. NURBS have continuous derivatives up to order d. In other words, we have that:

r ∈ Cd([k−d, kd+n]). (2.117)

As with the B-splines, it is possible to diminish these continuity conditions at the position of the knots by using

multiple knots. This is illustrated in figure 2.26.

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(a) (b) (c)

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

(d) (e)

Figure 2.26: Diminishing the continuity conditions by using multiple knots with a NURBS of degree 3. A the position of the knot

k1, the NURBS is C3
in (a), C2

in (b), C1
in (c), C0

in (d), and not even continuous in (e).

Derivatives. Several ‘types’ of derivatives are useful for parameter estimation: with respect to the free vari-

able x, to the control points p =
(

p−d . . . pd+n

)T

, and to the weights w =
(

w−d . . . wd+n

)T

. In this

paragraph, we will write explicitly the dependency of r in all its parameters, i.e. r(x;p,w) = r(x). For the

sake of simplicity, let us note n and m the numerator and the denominator of r:

n(x;p,w) =
n−1∑

i=−d

piwiNi,d+1(x), (2.118)

m(x;w) =
n−1∑

i=−d

wiNi,d+1(x). (2.119)

64 Chapter 2. GENERAL TOOLS

We just give the formula of the different derivatives. More detailed computations can be found in (Carlson,

2009).

Derivatives with respect to x.

∂r

∂x
(x;p,w) =

n′(x;p,w)−m′(x;w)r(x;p,w)

m(x;p,w)
, (2.120)

where n′ and m′ denote the derivatives of n and m with respect to x.

Derivatives with respect to p. The gradient of r with respect to p is given by:

∇
T

pr(x;p,w) =
(

R−d,d+1(x;p,w) . . . Rn−1,d+1(x;p,w)
)

, (2.121)

where the functions Ri,d+1 (i ∈ J−d, n− 1K) are the rational basis functions defined in equation (2.112).

Derivatives with respect to w. The gradient of r with respect to w is given by:

∇
T

wr(x;p,w) =

(
∂r

∂w−d
(x;p,w) . . .

∂r

∂wn−1
(x;p,w)

)

, (2.122)

with
∂r

∂wi
(x;p,w) =

m(x;w)piNi,d+1(x)−Ni,d+1(x)n(x;p,w)

(m(x;w))2
(2.123)

Representation of conics. Although we will not need this property in this document, it is still worth noticing

that conic sections can be represented with NURBS. It is an ability that standard splines, in particular B-

splines, do not have. Splines can only approximate conic sections. We will not give the details underlying the

representation of conics with NURBS (which can be found in, for instance, (Malgouyres, 2005)). We just give a

classic example in figure 2.27: the representation of a circle.

-1 0 1

-1

0

1

Figure 2.27: Exact representation of a circle with a NURBS of degree 2. Standard splines such as B-splines can only approxi-

mate a conic, not represent them exactly.

2.3 PARAMETRIC MODELS OF FUNCTION 65

2.3.4 Radial Basis Functions

2.3.4.1 Generalities

Definition. Radial Basis Functions (RBF) are another model of parametric functions. Let f : Rn → R be an

RBF. The function f is of the following form:

f(x) =

p
∑

i=1

wiρ(‖x− ci‖) +
p+n+1
∑

i=p+1

wiφi−p(x), (2.124)

The real values wi (i ∈ J1, n + 1K) are the weights of the RBF. They can be vectors of Rm in which case the

RBF f is a function from Rn to Rm. The second term in equation (2.124) is the affine part where the functions

φi (i ∈ J1, q − pK) are monomials of order up to 1 (Roberts and Stals, 2004). The vectors ci ∈ Rn (i ∈ J1, pK)

are called the centres of the RBF. They are generally fixed values, i.e. they are not part of the parameters to

be estimated in a parameter estimation problem. Broadly speaking, the centres define the number of degrees

of freedom of the RBF. Finally, ρ is a function from R+ to R. It is the basis function of the RBF. The norm

‖•‖ in equation (2.124) is not necessarily the Euclidean norm ; it can be any norm. Common basis functions

will be given in section 2.3.4.2. Contrarily to the spline model, the RBF are naturally designed as multi-variate

functions. This can be an advantage compared to the splines because the tensor-product approach used with

splines to handle multi-variate functions has some limitations.

Note that under some assumptions, the affine part in equation (2.124) can be dropped. The RBF thus

becomes:

f(x) =

p
∑

i=1

wiρ(‖x− ci‖). (2.125)

Linear model. Since an RBF is linear with respect to its weights, it can be written in vector form:

f(x) = lTxw, (2.126)

where lx and w are two vectors of Rp+n+1 that are defined in the following way:

lTx =
(

ρ(‖x− c1‖) . . . ρ(‖x− cp‖) xT 1
)

, (2.127)

wT =
(

w1 . . . wp+n+1

)

. (2.128)

Note that the vector lx may depend on x in a nonlinear fashion. However, this does not change the fact that an

RBF is linear with respect to the weights w. Note also that RBF are very similar to splines in the sense that they

are both a linear combination of basis functions. The differences are the form of the basis functions and their

locations.

The Gram matrix. For reasons that will become clear later in this document, the Gram matrix (Dachapak

et al., 2005) plays an important role in parameter estimation problems with RBF. Let {x1, . . . ,xp} be a set

of vectors, the number of which being identical to the number of centres of the RBF. The Gram matrix is the

matrix G ∈ Rp×p defined as follows:

G =

ρ(‖x1 − c1‖) . . . ρ(‖x1 − cp‖)
...

...

ρ(‖xp − c1‖) . . . ρ(‖xp − cp‖)

. (2.129)

66 Chapter 2. GENERAL TOOLS

For now, let us just say that parameter estimation problems with RBF involves the inversion of the matrix G.

Therefore, the definiteness of the Gram matrix is an important property. The definiteness of the Gram matrix

depends on the basis function ρ.

2.3.4.2 Basis Functions

In this section, we give details on classical basis functions for RBF (Powell, 2005). Table 2.2 gives the expres-

sion and some basic properties of common basis functions for RBF. These basis functions are illustrated in

figure 2.28 in the univariate and the bivariate cases.

Name ρ(r)
Gram

ma-

trix

Gaussian exp(−σr2), r ≥ 0, σ > 0 p.d.

Truncated Gaussian

{
exp(−σr2) if r ≤ α
0 otherwise

s.

Inverse multiquadric (r2 + c2)−
1
2 , r ≥ 0, c > 0 p.d.

Multiquadric (r2 + c2)
1
2 , r ≥ 0, c > 0 p.s.d.

Thin-plate spline

{
r2

σ2 log
r
σ if r > 0

0 otherwise
, σ > 0 p.s.d.

Wendland’s function

{ (
1− r

σ

)4 (
4 r
σ + 1

)
if 0 ≤ r ≤ σ

0 otherwise
, σ > 0 p.d.

Table 2.2: Some common basis functions (s.: singular, p.d.: positive definite, p.s.d.: positive semidefinite).

Among the basis functions described in table 2.2, two are of particular interest in computer vision: the

Thin-Plate Spline (TPS) basis functions and the Wendland’s basis functions.

TPS. The TPS are sometimes considered as the natural extension to the bivariate case of the cubic B-splines

(Wahba, 1990). This comes from the fact that these two models are the functions that minimizes the following

variational minimization problem:

min
f :Rn→R

B[f], (2.130)

with n = 1 in the cubic B-spline case and n ≥ 2 in the TPS case. The functional B is the bending energy. If

n = 2, it is defined as:

B[f] =

∫∫

R2

(
∂2f

∂x2

)2

+ 2

(
∂2f

∂x∂y

)2

+

(
∂2f

∂y2

)2

dxdy (2.131)

TPS have been widely used in computer vision (Bartoli, 2008a; Bartoli et al., 2010; Bookstein, 1989;

Donato and Belongie, 2002).

Wendland’s basis functions. The Wendland’s basis functions are another type of basis functions that are

particularly interesting for several reasons (Fornefett et al., 2001). First, they are expressed as polynomials of

relatively low order, which makes them easier to compute than basis functions relying on ‘exotic’ functions

such as the logarithm or the exponential. Second, the Wendland’s basis function have a bounded support. It

means that the influence of a weight is spatially limited. This is not the case with, for instance, the TPS.

2.3 PARAMETRIC MODELS OF FUNCTION 67

Gaussian -4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Multiquadric -� -4 -3 -2 -1 0 1 2 3 4 5
0

1

2

3

4

5

6

Inverse multiquadric -� -4 -3 -2 -1 0 1 2 3 4 5
0

0.4

0.8

1.2

1.6

2

TPS -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-0.5

0

0.5

1

1.5

2

2.5

3

Wendland -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.28: Graphical representation of RBF basis functions. Left-most column: univariate case. Right-most column: bivariate

case.

68 Chapter 2. GENERAL TOOLS

69

Chapter 3
General Points on Parameter and

Hyperparameter Estimation

Most of the topics addressed in this thesis can be re-

duced to parameter and hyperparameter estimation prob-

lems. The purpose of this chapter is to give the theory

and computational tools for solving such problems. As its

name may indicate, a parameter estimation problem is the

problem of finding the parameters of a model so that the

considered data set is correctly modelled. We first give

the theoretical building blocks underlying parameter esti-

mation problems. We then review some of the most com-

mon statistical methods (such as Maximum Likelihood Es-

timation and Maximization A Posteriori) used to solve such

problems. In particular, we show how these methods may

be formally derived from statistical considerations. Re-

lated to the problem of estimating parameters is the prob-

lem of estimating hyperparameters. Hyperparameters are

additional parameters such as the weighting of different

terms in a compound cost function that also influence the

result but that, for reasons that will become clear, cannot

be estimated the same way as classical parameters. In

this chapter, we give the fundamental definitions and con-

cepts related to the hyperparameters. We finally review

the standard and general techniques in hyperparameter

estimation.

70 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

3.1 Parameter Estimation

The vast majority of the problems treated in this document reduces to parameter estimation problems. In

this section, we give the basic tools and concepts related to such problems. Broadly speaking, the goal of

parameter estimation is to estimate (or infer) the unknown parameters of a fixed model in order to fit some noisy

measurements. It relies on an analysis of the probability density functions of the error in the measurements.

This section is organized as follows. We first give some general points on parameter estimation. We then

give some specializations of the general points.

3.1.1 General Points on Parameter Estimation

3.1.1.1 Parametric Models of Function

The first thing to do in a parameter estimation problem is to choose a parametric model of function. Note that in

this document the expression ‘parametric model of function’ will often be abbreviated to ‘parametric model’ or

even ‘model’. A parametric model is a family of functions that can be described with a finite set of parameters.

These parameters are generally grouped in a vector p ∈ Rp. The parametric model is the following family of

functions:

{F(•;p) : Rn → Rm | p ∈ Rp}. (3.1)

We generally designate a parametric model with the notation F : Rn × Rp → Rm. A standard convention is

to note Fp a particular element of the parametric model (for a given set of parameters p). We do not follow

this convention in this document. This stems from the fact that we sometimes want to consider the function F
as a function of its natural parameters for a fixed set of parameters p (i.e. the function F(•;p) : Rn → Rm).

Some other times we consider F as a function of the parameters for a given set of natural parameters x (i.e. the

function F(x; •) : Rp → Rm).

The choice of the model depends mainly on the hypothesis we are able to make on the data to fit. For

instance, if one wanted to study the motion of a ball thrown by a basketball player, a good model may be a

polynomial of degree 2. The most used models in this thesis have been detailed in section 2.3.

The goal of parameter estimation is to determine a set of parameters p so that the resulting function F(•;p)
is close to the data measurements.

3.1.1.2 Data Measurements, Errors

From now on and without any loss of generality, we assume that the model is made of scalar-valued functions.

The data points, i.e. the measurements, can be seen as noisy instances of a reference function f : Rn → R. Let

us note {xi ↔ yi}di=1 the set of the d measurements with xi ∈ Rn and yi ∈ R. We have that:

yi = f(xi) + εi, ∀i ∈ J1, dK (3.2)

where εi is a random variable. Estimation techniques relies on an analysis of the errors εi. In particular, an

estimation technique depends on the probability distribution assumed for the random variables εi.

3.1 PARAMETER ESTIMATION 71

3.1.1.3 Probability Density Function (PDF)

Let X be a continuous random variable. The probability density function p of the random variable X is a

function from R to R+ such that:

P [a ≤ X ≤ b] =
∫ b

a
p(x)dx, (3.3)

where P [a ≤ X ≤ b] denotes the probability that X lies in the interval [a, b]. In order to be a PDF, a function p

must satisfy several criteria. First, it must be a positive function. Second, it must be integrable. Third, it must

satisfies: ∫ +∞

−∞
p(x)dx = 1. (3.4)

The PDF of a random variable defines the distribution of that variable. Some common distributions (and what

they imply in terms of parameter estimation) will be detailed later in this section.

The cumulative distribution function F associated to the PDF p is the function from R to R+ defined by:

F (x) =

∫ x

−∞
p(x)dx. (3.5)

Note that since p is a positive function, F is an increasing function.

3.1.1.4 Maximum Likelihood Estimation

Maximum Likelihood Estimation (MLE) is a statistical tool used to find the parameters of a model given a set

of data. The general idea behind MLE is to find the ‘most probable’ parameters p given the observations. Let

{xi ↔ yi}di=1 be the observations. Let ei be the residual1 for the i-th data point for a given set of parameters p,

i.e. ei = yi − f(xi;p). Note that ei depends on the parameters p even though this dependency is not explicitly

written. We consider the residuals ei as random variables. Let us assume that the variables ei are independent

and identically distributed (i.i.d.). This allows us to say that the joint probability of the variables {ei}di=1 given

the model parameters p is:

P [e1, . . . , ed|p] =
d∏

i=1

P [ei|p], (3.6)

where P [A|B] denotes the probability of the event A given the event B and P [A1, . . . , An] denotes the joint

probability of the events A1, . . . , An. In terms of probability density function, it means that we have:

p(e1, . . . , ed;p) =

d∏

i=1

p(ei;p), (3.7)

where p is the probability density function associated to the distribution of the random variables ei. The

likelihood function L is the joint probability density function considered as a function of the parameters p:

L(p) = p(e1, . . . , ed;p) =
d∏

i=1

p(ei;p). (3.8)

1The residuals and the errors must not be confused: the residuals are the discrepancies between the the measurements and the fitted

model (i.e. the predictions) while the errors are the discrepancies between the measurements and the actual underlying model (which

is generally unknown in practice).

72 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

MLE amounts to maximize the likelihood of the parameters p, i.e.:

max
p
L(p). (3.9)

From a practical point of view, it is often more convenient to consider the log-likelihood instead of the likeli-

hood. The log-likelihood L̂ is the function defined as:

L̂ = ln(L). (3.10)

In this way, equation (3.9), which is a maximization problem with a cost function defined as a product of

numerous factors, can easily be turned into a minimization problem with a cost function defined as a simple

sum:

min
p
L̂(p) ⇔ min

p

d∑

i=1

− ln
(
p(ei;p)

)
. (3.11)

MLE will be instantiated to specific distributions later in this section. For now, let us just say that least-squares

problems are the natural consequence of MLE with normally-distributed errors.

3.1.1.5 Maximum A Posteriori Estimation

For MLE, we specified a distribution p(ei;p) for the residuals ei given the parameters p. For the method

of Maximum a Posteriori (MAP), we also specify a prior distribution p(p) on the parameters p that reflects

our knowledge about the parameters independently of any observation (Hastie et al., 2001). As an exam-

ple of parameter prior, one may assume that the fitted function must be ‘smooth’. The posterior distribu-

tion p(p; e1, . . . , ed) is then computed using the Bayes rule:

p(p; e1, . . . , ed) =
p(e1, . . . , ed;p)p(p)

∫
p(e1, . . . , ed;p)p(p)dp

. (3.12)

The denominator in the right hand side of equation (3.12) acts as a normalizing constant chosen such that

p(p; e1, . . . , ed) is an actual probability density function. The MAP estimation method amounts to solve the

following maximization problem:

max
p

p(p; e1, . . . , ed). (3.13)

Note that MAP is equivalent to MLE if the prior distribution of the parameters p is chosen to be a uniform

distribution. In this case, we say that we have an uninformative prior.

3.1.1.6 Estimator

Definition. An estimator is a function that maps a set of observations to an estimate of the parameters. In

other words, an estimator is the result of an estimation process and of a model applied to a set of data. If p are

the parameters we wish to estimate, then the estimator of p is typically written by adding the ‘hat’ symbol: p̂.

The notion of estimator is independent of any particular model or estimation process. In particular, it may not

be formulated as an optimization problem. This is the reason why the generic notation p̂ is used. Note that, by

abuse of language, p̂ designates either the estimator itself or the estimated parameters.

Bias. The bias of an estimator is the average error between estimations p̂ and the corresponding true pa-

rameters p (for a given set of data). Let e ∈ Rd be the residuals associated to the estimated model, i.e.

3.1 PARAMETER ESTIMATION 73

ei = f(xi; p̂)− yi. The bias is formally defined as (Hartley and Zisserman, 2003b):

E[p̂;p, e]− p =

∫

e

p(e;p)p̂ de− p, (3.14)

where E[p̂;p, e] is the expectation of having the estimate p̂ knowing the true parameters p and the errors e.

Another way to explain the bias of an estimator is to consider a given set of parameters p. Then an experiment

is repeated with the same parameters p but with different instance of the noise at each trial. The bias is the

difference between the average value of the estimated parameters p̂ and the true parameters p.

A desirable property for an estimator is to be unbiased. This means that on average with an infinite set of

data, there is no difference between the estimated model p̂ and the corresponding true model p.

Variance. Another important property of an estimator is its variance. Imagine an experiment repeated many

times with the same parameters p but with different instance of the noise at each trial. The variance of the

estimator is the variance of the estimated parameters p̂. In case where p is a vector, we talk about the covariance

matrix instead of the variance. It is formally defined as:

Var[p̂;p, e] = E[(p̂− E[p̂;p, e])2;p, e]. (3.15)

A low variance means that a change in the instance of noise have little effect on the estimated parameters p̂.

The variance of an estimator is sometimes called its efficiency. For an estimator, it is a desirable property to

be efficient, i.e. have a low variance. In other words, its preferable that the noise does not affect too much an

estimator.

Mean-squared residual. Usually, we are more interested in the Mean-Squared Residual (MSR) of an esti-

mator than in its variance. The MSR measures the average error of the estimated parameters with respect to the

true parameters. It is formally defined as:

MSR[p̂;p, e] = E[(p̂− p)2;p, e]. (3.16)

The variance, the bias and the MSR of an estimator are linked with the following relation:

MSR[p̂;p, e] = Var[p̂;p, e] + (E[p̂;p, e]− p)2. (3.17)

Note that the rightmost term in equation (3.17) is the squared bias of the estimator.

3.1.2 Specific Techniques in Parameter Estimation

In this section we specify some classical estimators that derives from particular assumptions on the distribution

of the noise. We will also give the properties of these estimators.

3.1.2.1 Normal Distribution and Least-Squares

Normal distribution. The normal distribution, also known as the Gaussian distribution, is a continuous

probability distribution used to describe a random variable that concentrates around its mean. This distribution

is parametrized by two parameters: the mean µ ∈ R, and the standard deviation σ ∈ R∗
+. The normal distribu-

tion with parameters µ and σ is denoted N (µ, σ). Table 3.1 gives the main properties of N (µ, σ). Figure 3.1

illustrates the PDF of the normal distribution.

74 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

Parameters µ ∈ R, σ ∈ R+

Support R

Mean µ

Variance σ2

PDF fN (µ,σ)(x) =
1

σ
√
2π

exp
(

− (x−µ)2

2σ2

)

Table 3.1: Some properties of the normal distribution N (µ, σ)

Figure 3.1: Graphical representation of the PDF of the normal distribution N (µ, σ). This figure shows that a normally-

distributed random variable is concentrated around the distribution mean µ. For example, in average, 95.5% of the values

taken by a normally-distributed random variable fall within the interval [−2σ, 2σ]. Figure 3.2 illustrates how unlikely it is for a

normally-distributed random variable to deviate significantly from the distribution mean.

The multivariate case. The multivariate normal distribution is a generalization of the normal distribution

to higher dimensions, i.e. to random vectors instead of random variables. If we consider random vectors of

dimension k ∈ N, then this distribution is parametrized by two parameters: the mean µ ∈ Rk and the covariance

matrix Σ ∈ Rk×k. The multivariate normal distribution of dimension k with parameters µ and Σ is denoted

Nk(µ,Σ). The covariance matrix Σ is the multidimensional counterpart of the monodimensional variance σ2.

It is a nonnegative-definite matrix. The fact that the matrix Σ is diagonal indicates that the components of

the random vector are independent. Having Σ = I means that the components of the random vector are i.i.d.

Table 3.2 sums up the main properties of the multivariate normal distribution.

Parameters µ ∈ Rk, Σ ∈ Rk×k

Support Rk

Mean µ

Variance Σ

PDF fNk(µ,Σ)(x) =
1

|Σ| 12 (2π) k2
exp

(
−1

2(x− µ)TΣ−1(x− µ)
)

Table 3.2: Some properties of the multivariate normal distributionNk(µ,Σ).

Link with least-squares estimators. A least square estimator corresponds to the maximum likelihood with

data corrupted with a normally-distributed noise. Let {xi ↔ yi}di=1 be a dataset corrupted with an additive

zero-mean i.i.d. Gaussian noise, i.e. ei ∼ Nm(0,Σ) with ei = F(xi;p) − yi, F : Rn × Rp → Rm is the

parametric model and p are the true parameter of the model. The probability of seeing the data point xi ↔ yi

given the parameters p is:

p(xi ↔ yi;p) =
1

(2π)
m
2 |Σ| 12

exp

(

−1

2
(F(xi;p)− yi)

TΣ−1(F(xi;p)− yi)

)

. (3.18)

3.1 PARAMETER ESTIMATION 75

If we apply the principle of MLE of equation (3.11) to equation (3.18), then we obtain the following minimiza-

tion problem:

min
p

d∑

i=1

‖F(xi;p)− yi‖2Σ, (3.19)

where ‖•‖Σ is the Mahalanobis norm. Equation (3.19) is the very definition of a weighted least-squares min-

imization problem. Note that if we further assume that the components of the error vectors ei are i.i.d. or,

equivalently, that Σ = I, then problem (3.19) reduces to a simple least-squares minimization problem. The

tools that allows one to solve these types of problem have been presented in section 2.2.2.

3.1.2.2 Heavy-tailed Distributions and M-estimators

Inliers, outliers, and robustness of an estimator. The data used to estimate the parameters of a model are

generally contaminated with noise. It is a common practice to assume that this noise is normally-distributed. A

common justification for such an assumption is the central limit theorem which states that the sum of a suffi-

ciently large amount of independent random variables is normally-distributed (even if each one of these random

variables is not normally-distributed and as long as their mean and variance are defined and finite). However,

it is not always reasonable to assume that the data measurements are normally-distributed. In particular, there

can be gross errors in the data, which are extremely unlikely if we only consider a normally-distributed noise

(see figure 3.2). These ‘false’ measurements are called outliers. Stated otherwise, outliers are arbitrarily large

errors. By contrast, measurements that are not outliers are called inliers. An estimator is said to be robust when

these outliers does not affect much the estimation.

The following events are more likely
to happen than having a random variable

normally-distributed greater than the
position of the corresponding line.

win to the French lottery

have a monkey typing a
predefined set of 20 letters

have 2 non-twin humans
sharing the same genotype

die under a meteorite fall
win to the European lottery

die under a lightening strike

-4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9

0.15

0.10

0.05

0.00

Figure 3.2: Illustration of the probability density function for a centred normal distribution with standard deviation σ = 1. The

probability that a realization of this law lies in [−σ, σ] is 68.3%, 95.5% in [−2σ, 2σ], and 99.7% in [−3σ, 3σ]. A value that

deviates from the distribution mean more than 5 times the standard deviation is more than extremely unlikely.

M-estimators. M-estimators are robust estimators that are constructed from MLE (or MAP) assuming a non-

normally-distributed noise. The principle consists in taking a distribution that has a PDF with ‘heavy tails’.

Having such tails means that large errors are less improbable than it would be with the normal distribution.

Many different M-estimators based upon several noise distributions have been proposed. Note that some of

these M-estimators are statistically grounded in the sense that the considered distributions are related to actual

facts. Other M-estimators are a little bit more artificial in the sense that their underlying probability distribu-

tions have been made up for the need of robustness. Sometimes, the underlying probability distribution of an

76 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

M-estimator is not even an actual probability distribution since it does not sums up to 1. In this case, the ‘prob-

ability distribution’ is to be considered as some kind of ‘score function’ which takes high values for probable

inputs and lower values for less probable inputs. This does not forbid one to apply the MLE principle to build

a cost function.

We now give some notation and vocabulary on M-estimators. After that, we will detail some typical M-

estimators.

Notation and vocabulary on M-estimators. An M-estimator is typically defined using what is called a ρ-

function. The ρ function of an M-estimator is a function from R to R+ that defines the underlying probability

distribution2 of the M-estimator:

p(e) = exp(−ρ(e)). (3.20)

The cost function minimized by the M-estimator is obtained by applying the MLE principle to the distribution

of equation (3.20), which gives:

min
p

d∑

i=1

ρ(ei). (3.21)

Note that the least-squares cost function is just a particular case of M-estimator with ρ(x) = x2. Two other

interesting functions can be associated to an M-estimator: the influence function and the weight function. The

influence function, denoted ψ, is defined as:

ψ(x)
def
=

∂ρ

∂x
(x). (3.22)

The weight function w, also known as the attenuation function, is defined as:

w(x)
def
=

ψ(x)

x
. (3.23)

It measures the weight given to a particular measurement in the cost function according to the error it produces.

With M-estimators, the principle is to give large weights to small errors and small weights to large errors (which

are likely to come from outliers). Note that, as defined in equation (3.23), the weight function w is not defined

at zero. It is generally possible to define it at this particular point with a continuous extension.

Common M-estimators. Here comes a list of some typical M-estimators along with some comments. A

graphical illustration of these M-estimators is given in figure 3.3. Other M-estimators can be found in, for

instance, (Hartley and Zisserman, 2003a) or (Zhang, 1997).

• Least-squares. As it was already mentioned before, the least-squares cost function is a special case of

M-estimator with the following ρ-function:

ρ(x) = x2

Of course, since it relies on a normally-distributed noise, this ‘M-estimator’ is not robust. In fact, its

breakdown point3 is 0.

2For many M-estimators, equation (3.20) does not define an actual probability density function since it does not sum up to one. In

this case, we may talk of pseudo-distribution but, for the sake of simplicity, we still refer to it as a distribution.
3The breakdown point of an M-estimator is a value between 0 and 1 that indicates the proportion of outliers the dataset can contain

without altering the accuracy of the M-estimator. Even though the breakdown point may lie in [0, 1], it is not really possible to have a

breakdown point greater than 0.5 for obvious reasons.

3.1 PARAMETER ESTIMATION 77

• Least absolute values (L1 norm). Instead of using a cost function defined as a sum of square, the least

absolute values estimator uses a cost function defined as a sum of absolute values. It corresponds to the

following ρ-function:

ρ(x) = |x|

Although more robust than the least-squares cost function, the L1 norm is not really robust. The main

advantage of the L1 norm is that it is convex (which is a nice property for minimizing it). However,

problems may arise with the L1 norm since it is not differentiable at 0.

• Huber M-estimator. The Huber M-estimator is a combination of the least-squares cost function and of

the L1 norm (Huber, 1981). It is defined with:

ρ(x) =

x2

2 if |x| < ch

ch
(
|x| − ch

2

)
otherwise,

with ch ∈ R∗
+ a constant that tunes the sensitivity to outliers.

• Tukey M-estimator. The ρ-function of the Tukey M-estimator is the bisquare function:

ρ(x) =

c2t
6

(

1−
(

1−
(

x
ct

)2
)3
)

if |x| < ct

c2t
6 otherwise,

with ct ∈ R∗
+ a constant that tunes the sensitivity to outliers. The Tukey M-estimator is a saturated

M-estimator. It means that it takes a constant value after a certain threshold. Some of our contributions

will make use of this property. This is one of the most robust M-estimator presented in this document

(since the influence of outliers is extremely limited).

• Cauchy M-estimator. The Cauchy M-estimator is defined by:

ρ(x) = log

(

1 +
x2

γ2

)

,

where γ ∈ R∗
+ is the scale parameter. It is derived from the Cauchy distribution whose PDF is a bell-

shaped curve as for the normal distribution but with heavier tails. The Cauchy distribution is interesting

because some of its properties are directly linked to the notion of outlier. For instance, the mean of the

Cauchy distribution does not exists. Intuitively, this stems from the fact that the average of the successive

outcomes of a Cauchy-distributed random variable cannot converge since it will always be a value so

large that it forbids the convergence (as an outlier would do).

• Modified Blake-Zisserman. The Blake-Zisserman M-estimator (Hartley and Zisserman, 2003a) relies

on the following assumptions: inliers are considered to be normally-distributed while outliers follow a

uniform distribution. It is defined with the following ρ-function:

ρ(x) = − log
(
exp(−x2) + ε

)

This cost function approximates the least-squares cost function for inliers while it asymptotically tends

to − log(ε) for outliers. Note that this M-estimator was initially presented in a slightly different way in

(Blake and Zisserman, 1987).

78 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

• Corrupted Gaussian. The corrupted Gaussian M-estimator assumes a normal distribution for both the

inliers and the outliers. However, a Gaussian with a large standard deviation is used for the outliers. It

results in the following ρ-function:

ρ(x) = − log

(

α exp(−x2) + (1− α) 1
w

exp

(

− x
2

w2

))

,

here w is the ratio of standard deviations of the outliers to the inliers and α is the expected fraction of

inliers.

Optimization of M-estimators. Let f : Rn ×Rp → R be the parametric model and let {xi ↔ yi}di=1 be the

dataset. Let us denote ei the i-th residual: ei(p) = f(xi;p) − yi. The general form of an M-estimator cost

function is:

min
p

d∑

i=1

ρ(ei(p)). (3.24)

Solving this problem can be achieved with a generic optimization algorithm such as the Newton method. How-

ever, it is possible to turn problem (3.24) into a weighted least-squares problem with variable weights which

can be solved with IRLS. Using IRLS is sometimes preferable than using a generic algorithm such as Newton’s

method. Turning problem (3.24) into an IRLS problem is achieved by writing the optimality condition (see

section 2.2) and developing them in the following manner:

∇p

(
d∑

i=1

ρ(ei(p))

)

= 0 ⇔
d∑

i=1

ψ(ei(p))∇pei(p) = 0

⇔
d∑

i=1

w(ei(p))ei(p)∇pei(p) = 0

⇔
d∑

i=1

w(ei(p))
1

2
∇p

(
e2i (p)

)
= 0. (3.25)

If we consider the value of p fixed in the factor w(ei(p)), then equation (3.25) corresponds to the optimality

condition of the following weighted least-squares problem:

min
p

d∑

i=1

wie
2
i (p), (3.26)

with wi = w(ei(p)). Therefore, the initial problem (3.24) can be solved with the IRLS principle by iteratively

updating the values wi for i ∈ J1, dK.

Note that minimizing an M-estimator cost function is not a trivial task even though an optimization algo-

rithm is available. Indeed, the M-estimator cost functions are generally not convex (except for the L1 norm and

the Huber M-estimator). It is thus easy to fall in a local minimum.

3.1.2.3 Other robust estimators

M-estimators are not the only robust estimators. There exist other methods that cope with the presence of

outliers in the data. We will not detail here the methods not used in the rest of this document. For instance,

RANSAC (RANdom SAmple Consensus) (Fischler and Robert, 1981) is a popular robust estimators able to

fit a parametric model to noisy data containing outliers. The least median of squares (Erickson et al., 2004;

3.1 PARAMETER ESTIMATION 79

ρ-function
Influence function

(ψ)

Weight function

(w)

[Pseudo-]

distribution

(exp(−ρ))

Least-

squares

-2 0 2

0

1

2

3

4

-2 0 2

-2

0

2

-2 0 2

0

0.2

0.4

0.6

0.8

1

-2 0 2

0

0.2

0.4

0.6

0.8

1

L1 norm

-2 0 2

0

1

2

3

-2 0 2

-1

-0.5

0

0.5

1

-2 0 2

0

50

100

150

-2 0 2

0

0.2

0.4

0.6

0.8

1

Huber

-2 0 2

0

0.5

1

1.5

2

2.5

-2 0 2

-1

-0.5

0

0.5

1

-2 0 2

0

0.2

0.4

0.6

0.8

1

-2 0 2

0

0.2

0.4

0.6

0.8

1

Tukey

-2 0 2

0

0.05

0.1

0.15

-2 0 2

-0.2

0

0.2

-2 0 2

0

0.2

0.4

0.6

0.8

1

-2 0 2

0

0.2

0.4

0.6

0.8

1

Cauchy

-2 0 2

0

0.5

1

1.5

2

-2 0 2

-1

-0.5

0

0.5

1

-2 0 2

0

0.5

1

1.5

2

-2 0 2

0

0.2

0.4

0.6

0.8

1

Blake-

Zisserman

-2 0 2

0

1

2

3

-2 0 2

-2

-1

0

1

2

-2 0 2

0

0.5

1

1.5

-2 0 2

0

0.2

0.4

0.6

0.8

1

Corrupted

Gaussian

-5 0 5

0

1

2

3

-5 0 5

-2

-1

0

1

2

-5 0 5

0

0.5

1

1.5

-5 0 5

0

0.1

0.2

0.3

0.4

0.5

Figure 3.3: Illustration of the different M-estimators presented in section 3.1.2.2.

80 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

Rousseeuw, 1984) is another robust estimator which consists in replacing the sum of squares in the classical

least-squares approach by the median of the squares:

min
p

med
i∈J1,dK

(f(xi;p)− yi)2. (3.27)

This approach is based on the fact that the median is a robust statistic while the mean is not (see the next

paragraph). A common technique to solve problem (3.27) is to use a sampling approach. While this is possible

and effective when the number of parameters to estimate is limited, it may become intractable for large numbers

of parameters.

Mean, median, and trimmed mean. Sometimes, it is interesting to get information on the central tendency

of a set of values {xi}di=1. To do so, using the (arithmetic) mean of the dataset seems to be a natural choice.

However, the mean is not a robust statistic. Indeed, a single outlier in the dataset can perturb as much as we

want this statistic (the breakdown point of the mean is 0).

Another measure of central tendency is the median. The median is the value that separates the higher half

and the lower half of the dataset. Since the outliers are among the highest or the lowest values of the dataset,

they do not perturb the median. The breakdown point of the median is 1
2 .

The trimmed mean is another robust central statistic based on the same idea (i.e. that outliers are among

the highest or the lowest values of the dataset). The trimmed is defined as the mean of the central values of

the dataset (i.e. the initial dataset with the α lowest and highest values removed). The breakdown point of the

trimmed mean is 2α
n , with n the total number of points.

3.2 Hyperparameters

In this section, we discuss an important aspect of parameter estimation problems: the hyperparameters. This

section is organized as follows. We first try to give a general definition of what the hyperparameters are. Since

the distinction between classical parameters and hyperparameters is somewhat unclear, the general definition is

then complemented with a simple practical example which allows one to get a good grasp at this concept. We

finish this section with an explanation of the common approach to determine automatically hyperparameters.

The principle will come along with a review of the most common and practical approaches used to determine

hyperparameters.

Note that the problems induced by the hyperparameters are one of the central topics tackled in this thesis.

Consequently, more advanced aspects on hyperparameters, including our contributions, will be spread across

this document. Table 3.3 synthesizes the parts of this document in which hyperparameters are involved.

Where What

3.2 Definition, description, and common tools.

4.2 The L-Tangent Norm: a contribution that allows one to tune hy-

perparameters for range surface fitting

4.2.2 Review of another approach to determine hyperparameters: the

L-curve criterion

4.3.1.4 Another approach to determine hyperparameters specific to range

surface fitting adapted from the Morozov’s discrepancy principle

5.3 One of our contribution that uses the specific setup of feature-

based image registration to automatically tune hyperparameters

Table 3.3: Parts of this thesis that deal with hyperparameters.

3.2 HYPERPARAMETERS 81

3.2.1 Generalities

As it was explained in the previous sections, the goal of parameter estimation is to find the natural param-

eters of a parametric model. The natural parameters are, to cite a few, the coefficients of a polynomial, the

weights of a B-spline or the control points of a NURBS. Generally, in such problems, one also has to deter-

mine ‘extra-parameters’ which are, for instance, a value controlling the configuration of the parametric model

or a parameter of a prior distribution in a MAP estimation scheme. This supplemental parameters are called

the hyperparameters. In other words, an hyperparameter is a parameter of a prior (as distinguished from the

parameters of the model for the underlying system under analysis). For example, the degree of a B-spline is

an hyperparameter. The number of knots of a B-spline is another example of hyperparameter linked to the

parametric model itself. The weight given to a regularization term in a cost function is also an hyperparameter

(linked to the cost function instead of the parametric model of function).

3.2.1.1 A Practical Example

In order to make things clearer, we now illustrate the concept of hyperparameter on a simple example. It will

allow us to show how some usual types of hyperparameters arise in a parameter estimation problem. Let us

consider that we have a set of data points {xi ↔ yi}ni=1 with xi ∈ R and yi ∈ R. These data are illustrated in

figure 3.4. We now consider the problem of fitting a polynomial of degree d to this data set. The parametric

-2 -1 0 1 2

-3

0

3

Figure 3.4: Noisy data to fit with a polynomial.

model to use is a function f from R× Rd+1 to R that can be written as:

f(x;a) =
d∑

i=0

aix
i. (3.28)

Let us further assume that the data points are noisy and that the errors are normally-distributed with zero mean

and standard deviation σ. If we note f the true function, then we have that:

yi = f(xi) + εi, (3.29)

where εi ∼ N (0, σ) for all i ∈ J1, nK. One may also want to make an assumption on the fitted polynomial.

For instance, smooth polynomial could be preferred. This kind of assumption is quite usual since it helps

in compensating the undesirable effects caused by for instance, noise, outliers, or lack of data. In the MAP

estimation framework, this can be achieved using a prior distribution on the parameters. For example, we could

say that smooth polynomials (i.e. the ones that minimizes the bending energy) must be more probable than

other ones. This can be implemented using the following prior distribution on the parameters:

P (a) ∝ exp(−λb(a)), (3.30)

82 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

where b is the function from Rd+1 to R+ that gives the pseudo-bending energy of the polynomial:

b(a) =

∫

Ω
(f(x;a))2 dx, (3.31)

where Ω ⊂ R is the definition domain of the polynomial f with respect to the free variable x. The PDF of the

prior distribution defined in figure 3.30 is a bell-shaped curve which width is controlled by the parameter λ ∈
R∗
+. A large λ results in a narrow bell-shaped curved which means that only very smooth polynomials will have

a non-negligible probability. On the contrary, a small lambda produces a large bell-shaped curve which makes

probable rugged polynomials. The prior parameter λ is often named the smoothing parameter or regularization

parameter. If we apply the MAP principles (as described in section 3.1.1.5) with the hypothesis we have just

made, then estimating the coefficients a of the polynomial is equivalent to solve the following minimization

problem:

min
a∈Rd+1

d∑

i=1

(f(xi;a)− yi)2 + λb(a). (3.32)

In equation (3.32), the coefficients of the vector a are the natural parameters of the estimation problem while

the values d and λ are the hyperparameters. More precisely, the degree d is a model hyperparameter since it is

a parameter that ‘tune’ the underlying model of function. The value λ is what we call a cost hyperparameter

since it is linked to the cost function itself. If we consider that d and λ are given, then problem (3.32) is a

simple linear least-squares problem. However, determining correct values for the hyperparameters is a difficult

task, especially if we want this determination to be automatic. It is nonetheless mandatory in order to get

proper results. Figure 3.5 shows the influence of the hyperparameters d and λ of our example with the data of

figure 3.4.

A fact that makes difficult the automatic computation of the hyperparameters is that they cannot be di-

rectly included in the initial optimization problem. For instance, in the context of our example, the following

minimization problem will not lead to the expected results:

min
a∈Rd+1

d∈N
λ∈R+

d∑

i=1

(f(xi;a)− yi)2 + λb(a). (3.33)

For instance, the bending term b is a positive value. Consequently, the best way to minimize the influence of

this term in the cost function of equation (3.33) is to set λ = 0. This is clearly not the expected result since, for

some reasons, we wanted a ‘smoothed’ polynomial. The same kind of dubious effect will arise for the degree

of the polynomial. Indeed, the error in equation (3.33) will be completely minimized (i.e. the value of the cost

function is null) if the fitted polynomial interpolates the data points. This is achieved by taking d = n − 1

where n is the number of data points. In our example, we had 25 data points but the best fit is realized with a

polynomial of degree 10. The general principles used to build a correct approach for automatic hyperparameter

selection will be explained in section 3.2.2.

3.2.1.2 Formal Definitions

We give here a set of definitions which are more or less4 related to the hyperparameters.

4Some of these definitions are completely specific to the hyperparameters while some others are more generic but conveniently

explained in this section.

3.2 HYPERPARAMETERS 83

d λ = 5× 10−7 λ = 5× 10−5 λ = 5× 10−3 λ = 5× 10−1

1

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

2

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

5

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

10

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

15

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

20

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

-2 -1 0 1 2

-3

0

3

Figure 3.5: Polynomials fitted on the data of figure 3.4 with different hyperparameters. The columns correspond to different

regularization parameters λ. The row correspond to different polynomial degree d. The red dots are the data points. The

grey dashed curve is the true function (which is, of course, considered as unknown in the parameter estimation problem. The

blue solid line is the fitted polynomial. This figure shows how important is the choice of the hyperparameters. Here, the best

fit seems to correspond to d = 10 and λ = 5 × 10−5
. In this artificial setup, it is easy to say that this particular couple of

hyperparameters is the good choice since the ground truth function is available. In practice, choosing correct hyperparameter

is far from being a trivial task.

84 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

Hyperparameter classification. In this thesis, we classify the hyperparameters into two main categories.

First, we consider the parameters linked to the prior distribution given to the natural parameter to estimate. We

call this type of hyperparameters the cost hyperparameters since, after having derived an estimation procedure

with, for instance with MAP, they appear as tuning values of the cost function. Second, we consider the model

hyperparameters which are directly linked to the parametric model of function. Examples of this second type of

hyperparameter include the degree of a polynomial or of a B-spline, the number of control points of a B-spline,

the kernel bandwidth of a RBF, the number of centres of a RBF, etc.

Model complexity. Roughly speaking, the (effective) complexity of a parametric model corresponds to its

number of degrees of freedom minus the ‘number’5 of constraints implicitly induced by the prior given to

the parameters of the model. Consequently, the complexity of a parametric model is mostly tuned by the

hyperparameters. In order to get a correct parametric estimator, the complexity of the model must meet the

actual complexity carried by the data. By ‘actual’, we mean the complexity of the data excluding the noise.

In practice, this actual complexity is generally not known precisely. Indeed, given a set of data, it is hard to

distinguish between the noise and the true information. This fact systematically leads to problems such as

underfitting and overfitting which are closely related to the concepts of bias and variance of an estimator. These

concepts are explained in the next paragraphs along with some other definitions.

Residual error. The residual error is the sum of the errors between the estimated parametric model and the

data (at the location of the data points). For a parametric model f and a set of parameters p, the residual error

may be defined as:
n∑

i=1

d(f(xi;p), yi), (3.34)

where d is a function that gives the distance between its two arguments (for instance, a common choice is the

squared Euclidean norm). Note that equation (3.34) is similar to what is generally minimized in a parameter

estimation problem. However, as it will be seen later, having a minimal residual error does not always lead to

the proper results.

Prediction error. The prediction error (also known as the expected prediction error or generalization error

or test error) is a quantity that measures how well an estimated model is able to generalize (Hastie et al.,

2001). Given a point x0 different of the points used to estimate the parameters, the prediction error measure

the difference between the estimated value f(x0;p) and the true value f(x0). In other words, it measures how

well the estimated model performs, i.e. how close it is to the true function. The prediction error at x0 is given

by:

E
[(
f(x0)− f(x0;p)

)2
]

(3.35)

The prediction error can be broken down into two terms:

(
E [f(x0;p)]− f(x0)

)2
+Var(f(x0;p)). (3.36)

The first term is the squared bias of the estimator while the second term is the variance of the estimator.

Bias-variance compromise. Equation (3.36) should ideally be the cost function to be minimized for pa-

rameter estimation but this is not possible in practice because f is not known. A parametric model with low

5‘Number’ is probably not the right term since it includes, for instance, the strength of a regularization term.

3.2 HYPERPARAMETERS 85

complexity leads to a high bias and low variance. On the contrary, a parametric model with high complexity

leads to a low bias and high variance. This is called the bias-variance compromise. Note that minimizing

usual cost functions, which are particular forms of Equation (3.34), is equivalent to minimize only the bias

term in equation (3.36). This is the reason why the hyperparameters cannot be directly included in the stan-

dard optimization problem for parameter estimation since it would only reduce the bias of the estimator, not its

variance.

Underfitting, overfitting. The phenomena of underfitting and overfitting are closely related to the bias-

variance compromise. The underfitting problem arises when the complexity of the parametric model is not

enough high. In other words, the parametric model is not flexible enough to model the data. It corresponds to

an estimator with high bias and low variance. On the other side, there is the overfitting problem. It corresponds

to a parametric model with a too high level of complexity. In this case, it is so flexible that the estimated

parametric model will model not only the data but also the noise. It is an estimator with high variance and low

bias.

Approximation, interpolation. An estimated parametric model f is said to interpolate the data {xi ↔ yi}ni=1

if we have that:

f(xi;p) = yi ∀i ∈ J1, nK. (3.37)

It corresponds to the estimator with minimal bias. If the data point are noisy (as it is always the case in the real

world), it also corresponds to the estimator with maximal variance. Consequently, interpolators are generally

not the best estimators (at least, when there is noise in the data). It is thus preferable to have estimators that

approximates the data instead of interpolating them, i.e. such that:

f(xi;p) ≈ yi ∀i ∈ J1, nK. (3.38)

Quantity of unmodeled data

(bias) Quantity
 of m

odeled noise

(va
ria

nce)

Underfitting Overfitting

Prediction error

Complexity of the model (~ effective number of degrees of freedom)
[mainly tuned by the hyperparameters of the estimator]

Approximation Interpolation

Residual

Optimum

Figure 3.6: Illustration of the concepts presented in section 3.2.1.2. The hyperparameters in an estimation scheme (both

cost and model hyperparameters) allows one to tune the complexity of a parametric model. The best hyperparameters for an

estimator are the one that would result in a minimization of the prediction error (purple line). The prediction error cannot be

computed in practice since its definition relies on the knowledge of the true underlying function. Instead, one generally minimizes

a quantity related to the residual error (green line). This quantity is closely related to the bias of the estimator. Minimizing the

bias of an estimator is not sufficient enough since it may lead to a fitted function that model the noise.

86 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

3.2.2 Automatic Computation of the Hyperparameters

3.2.2.1 General Principle

As we just explained, the hyperparameters are important in order to estimate proper parameters. We also

said that determining correct hyperparameters was not a simple problem in the sense that it cannot be directly

included in the minimization problem derived to estimate the natural parameters. It is nonetheless possible to

use automatic procedure to determine the hyperparameters. In fact, there exists an incredibly large number

of such procedures. For that matter, some of the contributions we propose in this document are new ways of

automatically determining hyperparameters.

The most general approach to automatically determine hyperparameters (in other words, to select the model

complexity) consists in minimizing an external criterion which, in a nutshell, assesses the quality of the esti-

mated model. Let us call c this criterion. In the general case, c is a function from Rh to R where h is the

number of hyperparameters (which are grouped in a vector denoted h ∈ Rh in this section). Always in the gen-

eral case, c(h) is small when the function induced by the hyperparameters h (and the subsequent parameters)

is correct, i.e. it does not underfit nor overfit the data. Let r be the cost function used to determine the natural

parameters of a model from the data. For the needs of this section, we consider r as a function of both the

natural parameters and the hyperparameters. In particular, r is a function from Rn×Rh where n is the number

of natural parameters and h is the number of hyperparameters. The general principle of parameter estimation

with automatic hyperparameters selection is to solve the following nested optimization problem:

min
p∈Rn

r

(

p; arg min
h∈Rh

c(h)

)

. (3.39)

Note that the problem stated in equation (3.39) is quite different of the inconsistent problem in which both the

parameters and the hyperparameters are mixed in the initial optimization problem:

min
p∈Rn

h∈Rh

r(p;h). (3.40)

Indeed, for the reasons explained above, the solution of problem (3.40) would be the one with minimal bias and,

consequently, it would completely overfit the data (if possible, it will even try to interpolate the data instead of

finding an appropriate approximation).

Given what was just said, the main difficulty for building an automatic hyperparameter selection procedure

is obviously to find a criterion c which reach a minimum value for correct hyperparameters6. Of course, the

best choice for c would be the prediction error but, unfortunately, it is not possible since this criterion relies on

an unknown: the true function. Many criteria have been proposed. They take their root in different domain:

information theory, Bayesian reasoning, philosophy, etc. We review some of the most classical ones in the next

sections.

3.2.2.2 Cross-Validation

Cross-Validation is one of the most common approach to automatically tune hyperparameters. At a glance, the

principle of Cross-Validation is to build a criterion that, for a given set of hyperparameters, measures how well

the resulting estimated model is able to generalize the data. In other words, it measures how good the behaviour

of the estimated model is ‘between’ the data. Of course, the ability to generalize of an estimated model can be

6Practical considerations such as non-convexity of the criterion make this problem even more difficult even though such properties

are really desirable for automatic optimization.

3.2 HYPERPARAMETERS 87

computed precisely only if the true function is available. The magic of Cross-Validation is to be able to estimate

this ability only from the data and without requiring the true model.

The general principle of Cross-Validation relies on an approach commonly used in learning theory: dividing

the dataset into several subsets. Each one of these subsets is then alternatively used as a training set or as a

test set to build Cross-Validation score function. The way the dataset is divided gives rise to different variant

of Cross-Validation. In some special cases, efficient approximations can be derived which make computations

faster. In the next paragraphs, we review some of the most common flavour of Cross-Validation.

Cross-validation is very interesting for several reasons (Arlot and Celisse, 2010). In particular, it is ‘uni-

versal’ in the sense that the data splitting technique is very generic. The only assumption to be made for using

cross-validation is that the data must be identically distributed. Besides, it is not linked to a particular frame-

work as most as other methods for hyperparameters selection are. For instance, Mallow’s CP is only applicable

for least-squares cost functions (see section 3.2.2.3).

Leave-one-out Cross-Validation. Leave-one-out Cross-Validation (LOOCV) is one of the simplest variant of

the general Cross-Validation principle. A detailed study of LOOCV is available in (Wahba, 1990). For a given

set of hyperparameters h ∈ Rh, let p
(k)
h be the parameters of the model estimated from the data with the kth

data point left out. The LOOCV criterion is defined as:

LOOCV(h) =
1

n

n∑

k=1

d
(

yk, f
(

xk;p
(k)
h

))

, (3.41)

where d is the function that gives the discrepancy between its two arguments. For instance, it may be the

squared Euclidean norm. Equation (3.41) means that every point of the initial dataset is used as a validation

set for the model estimated from the other data points. If there are enough points in the data set (say, for

instance, n > 50) then it is reasonable to think that the parameters estimated with n− 1 points are close to the

ones that would be estimated with all the n initial points. Consequently, for a given k, d
(

yk, f
(

xk;p
(k)
h

))

is a good approximation of the generalization error made at xk. Therefore, cLOOCV is an approximation of the

generalization error resulting of the given set of hyperparameters h.

A major drawback. LOOCV is quite appealing and often gives satisfactory results in practice. However,

as one may notice from equation (3.41), it can be extremely heavy to compute. Indeed, each term of the sum in

equation (3.41) requires one to estimate the set of parameters p
(k)
h . If n is large then the sum in equation (3.41)

has many terms, each one of which being potentially long to compute.

A special case of interest: linear least squares. In the case where the cost function is a sum of squared

linear terms (which happens if the parametric model is linear with respect to its parameters and if the noise is

assumed to be normally distributed), a closed-form non-iterative approximation of the LOOCV criterion exists.

The general form of a linear least squares parameter estimation problem is:

min
p
‖Mhp− y‖2 , (3.42)

where y is a vector containing the right part of the measurement (the yi for i ∈ J1, nK). The matrix Mh is a

matrix that depends on the left part of the measurements (the xi for i ∈ J1, nK), on the parametric model of

function, and on the hyperparameters h. The solution p⋆
h of problem (3.42) is given by:

p⋆
h = (MT

hMh)
−1MT

hy. (3.43)

88 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

Note that p⋆
h depends on the hyperparameters h (which are considered to be given and fixed in equation (3.43)).

The hat matrix, denoted Hh, is the matrix of the linear application that maps the measurements to the values

predicted by the estimated model (denoted ŷi for i ∈ J1, nK and gathered in a vector ŷ). It is defined by:

ŷ = Mhp
⋆ = Mh(M

T

hMh)
−1MT

h
︸ ︷︷ ︸

Hh

y. (3.44)

The closed-form approximation to the LOOCV criterion, denoted LOOCVa, is given by:

LOOCVa(h) =
1

n

∥
∥
∥
∥
diag

(
1

1− diag(Hh)

)

(Mhp
⋆
h − y)

∥
∥
∥
∥

2

. (3.45)

From equation (3.45), we see that for a given set of hyperparameter h, the computational complexity of the

criterion LOOCVa is reduced by one order of magnitude compared to the exact but iterative criterion LOOCV.

Proof. A proof of the derivation of the LOOCVa criterion as an approximation of the LOOCV criterion can

be found in, for instance, (Bartoli, 2008b; Gentle et al., 2004; Wahba, 1990).

Generalized Cross-Validation. Generalized Cross-Validation (GCV) is a variation of the LOOCVa crite-

rion proposed in (Craven and Wahba, 1979). It consists in replacing the individual diagonal coefficients of the

hat matrix in equation (3.45) by the average of all the coefficients of the diagonal. The GCV criterion is thus

defined as:

GCV(h) =
‖Mhp

⋆
h − y‖2

1
n(n− trace(H))2

. (3.46)

The GCV criterion was originally proposed to reduce the computational complexity but it has been found that

this criterion possesses several interesting properties. In particular, it has been shown (Golub et al., 1979) that

the GCV criterion is an approximation of Mallow’s CP criterion (see section 3.2.2.3). It has also been shown to

be rotation-invariant approximation of the PRESS (PREdiction Sum of Squares) statistic of Allen7.

Leave-p-out Cross Validation. Leave-p-out Cross-Validation (LPOCV) (Shao, 1993) is another variant of the

Cross-Validation principle. It is similar to the LOOCV in the sense that it uses an exhaustive data splitting

strategy. With the ‘basic’ LOOCV, all the n possible subsets of size 1 were alternatively used as test sets. With

the LPOCV, every possible subset of size p (with p fixed and chosen in J1, n− 1K) is successively used as a test

set. Of course, the computational burden of such an approach is potentially gigantic since there are
(
n
p

)
subsets

of size p in a set of size n. Note that if p = 1 then LPOCV is equivalent to LOOCV.

V -fold Cross-Validation. Another common flavour of the Cross-Validation principle is the V -fold Cross-

Validation (VCV). It was introduced by (Geisser, 1975) as an alternative to the computationally expensive

LOOCV. A full review of the VCV can be found in (Brabanter et al., 2003). (Arlot and Celisse, 2010) gives

some useful insight about the VCV. Again, the initial dataset is split into training and test sets. However,

contrarily to LOOCV and LPOCV, the VCV is not an exhaustive approach. In the VCV case, the dataset is

split into V subsets of approximately equal size. These V subsets form a partition of the initial dataset. This

splitting is done before the computation of the criterion and does not vary after that. Each subset is then used

alternatively used as a test set. Given a set of hyperparameters h, let p
[v]
h be the set of parameters obtained from

7The PRESS statistic is similar to the LOOCV criterion but for a cost function with a data term only (Allen, 1971; Bartoli, 2008b)

3.2 HYPERPARAMETERS 89

the data with the vth subset left out. Let mv be the size of the vth subsets. The VCV criterion is defined by:

VCV(h) =

V∑

v=1

mv

n

mv∑

k=1

1

mv
d
(

yk, f
(

xk;p
[v]
h

))

, (3.47)

where d is a function that measures the difference between its two arguments (for instance, the squared

Euclidean norm). In practice, the number V of subsets used for computing the VCV is often chosen as

V = min(
√
n, 10). This gives a good trade-off between accuracy of the approximation of the generaliza-

tion error and the computational burden. Although very appealing, our experience leads us to say that the VCV

criterion does not give results as good as the ones obtained with the LOOCV or the GCV.

Other cross-validation criteria. The list of cross-validation criteria we presented so far is not even close to

being exhaustive. We will not detail here all the variant. For the sake of the culture, we will just cite a few

of them: Gauss-Newton leave-one-out cross-validation (Farenzena et al., 2008), balanced incomplete cross-

validation, repeated learning-testing, Monte-Carlo cross-validation, bias-corrected cross-validation, etc. Note

that (Arlot and Celisse, 2010) gives a good overview on some of these cross-validation criteria.

3.2.2.3 Mallow’s CP

Introduced in (Mallows, 1973), Mallow’s CP is a criterion that can be used to automatically tune hyperparam-

eters. The validity of this criterion is limited to linear least squares estimators. Besides, it is designed to work

with one integer hyperparameter. For the sake of simplicity, let us consider that the model is a polynomial and

that the only hyperparameter is the degree d of this polynomial. Let us further assume that dm is the maximal

degree allowed for the polynomial (i.e. d ∈ J0, dmK). Mallow’s CP is given by:

CP (d) =
1

σ̂2

n∑

i=1

(yi − f(xi;pd))
2 − n+ 2p, (3.48)

where p is the number of parameter of the model induced by the hyperparameter d (p = d + 1 in the case of

a polynomial), pd is the maximum likelihood estimate of the parameters given the hyperparameter d, n is the

number of data points, and σ̂2 is an estimate of the error variance that is usually computed as the residual sum

of squares with the full model (in this case, with a polynomial of degree dm).

Other criteria based on the initial Mallows CP criterion have been proposed. For instance, robust versions

of Mallow’s CP criterion are proposed in (Ronchetti, 1997; Ronchetti and Staudte, 1994).

3.2.2.4 Akaike Information Criterion

Akaike Information Criterion (AIC) is a criterion that relies on information theoretic foundations. It was in-

troduced in (Akaike, 1974). Useful insights on AIC are given in (Burnham and Anderson, 2004; Gentle et al.,

2004). In this section, we give the basic elements that allows one to progressively build the AIC criterion. The

AIC criterion will finally be given in equation (3.56).

The Kullback-Leibler (K-L) divergence is the quantity defined as:

I(f, f) =

∫

Ω
f(x) log

(
f(x)

f(x;p)

)

dx. (3.49)

It may be seen as a ‘distance’8 between the true model f and the estimated model f(•;p). The K-L divergence

8The term ‘distance’ is abusive in this case since the Kullback-Leibler divergence is not an actual distance in the mathematical

90 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

cannot be used directly as a criterion to choose the hyperparameters since it would require one to know the true

model. Therefore, the selection criterion will aim at minimizing an expected estimated K-L divergence:

Ey[I(f, f)]. (3.50)

The K-L divergence may rewritten as:

I(f, f) =

∫

f(x) log(f(x))dx−
∫

f(x) log(f(x;p))dx (3.51)

= Ex[log(f(x))]− Ex[log(f(x;p))] (3.52)

For varying hyperparameters, the first term in equation (3.52) is a constant, and therefore:

I(f, f) = c− E[log(f(x;p))]. (3.53)

The second term in equation (3.52) is the relative Kullback-Leibler divergence. In order to get a practical

criterion, the relative K-L need to be approximated (because it still depends on f). This is the goal of AIC:

maxEyEx[log(f(x;p))]. (3.54)

Akaike’s work says that an approximately unbiased estimate of maxEyEx[log(f(x;p))] is:

log(L(p̂))− k, (3.55)

with L the likelihood function, p̂ the maximum likelihood estimate of p, and k the number of parameters. The

AIC is given by:

AIC = −2 log(L(p̂)) + 2k. (3.56)

The terms in equation (3.56) can be identified to the terms in the bias-variance trade-off: the first term corre-

sponds to the bias while the second term corresponds to the variance.

A special case: least-squares. If the errors are assumed to be i.i.d. normally-distributed, the AIC can be

expressed by:

AIC = n log

(
RSS

n

)

+ 2k, (3.57)

where RSS =
∑n

i=1 r
2
i .

Variations on AIC. Although theoretically founded, several improvement and variations have been built upon

the AIC. For instance, if the sample size is small with respect to the number of parameters, then it is preferable

to use the corrected AIC given by (Sugiura, 1978):

AICc = −2 log(L(p)) + 2k +
2k(k + 1)

n− k − 1
. (3.58)

definition of it.

3.2 HYPERPARAMETERS 91

3.2.2.5 Bayesian Information Criterion

The Bayesian Information Criterion (BIC) is another criterion that can be used to automatically tune hyperpa-

rameters. It was proposed by (Schwarz, 1978). The BIC is defined as follows:

BIC = −2 ln(L) + k log(n). (3.59)

Equation (3.59) shows that BIC is very similar to the AIC. The practical difference between these two criteria is

that BIC tends to penalize complex models more heavily than AIC (because the second term in equation (3.59)

depends on the number n of model parameters). The other major difference between AIC and BIC is that BIC is

motivated in a quite different way than AIC. To this matter, and as noticed in (Burnham and Anderson, 2004),

the name BIC is a bit misleading since this criterion does not rely on information theory but, instead, on a

Bayesian approach to model selection. A synthetic explanation of the BIC foundations is given in (Hastie et al.,

2001, §7.7). We now give a quick justification of the BIC. Let F be the set of models generated by all the

possible hyperparameters, i.e. :

F =
{

fh = f(•;ph,h) | h ∈ Rh
}

, (3.60)

where f : Rm × Rn × Rh → R is the parametric model (in which we write explicitly the dependency on the

hyperparameters h). The goal is to find the best element in the set of functions F . Let us assume that we have

a prior distribution P (ph|fh) of the parameters of each model in F . The posterior probability of a given model

is given by:

P (fh|X) ∝ P (fh)P (X|fh) (3.61)

∝ P (fh)
∫

P (X|ph, fh)P (ph|fh)dph, (3.62)

where X = {xi ↔ yi}ni=1 represents the data. If one wants to compare the relative quality of two set of

hyperparameters h and h′, he can look at the ratio of their posterior probability:

P (fh|X)

P (fh′ |X)
=
P (fh)

P (fh′)

P (X|fh)
P (X|fh′)

. (3.63)

If the ratio in equation (3.63) is greater than one, the model induced by the hyperparameters h is considered

to be better than the one induced by the hyperparameters h′. It is a reasonable assumption to consider that the

prior distribution of the models is uniform. Consequently, the first factor in equation (3.63) is just a constant.

The second factor (known as the Bayes factor) can be approximated using this identity (Hastie et al., 2001):

log(P (X|fh)) ≈ log(P (X|p̂h, fh))−
dh
2

log(n), (3.64)

where p̂h is the maximum likelihood estimate of the parameters given the hyperparameters and dh is the number

of free parameter in fh. This last equation is equivalent to the BIC. Consequently, choosing the hyperparameters

that give the minimum BIC is equivalent to maximize the (approximate) posterior probability.

3.2.2.6 Minimum Description Length

The Minimum Description Length (MDL) criterion is another criterion that can be used to determine automati-

cally hyperparameters. It was first introduced by (Rissanen, 1978) and it relies on information theory. A good

synthesis of the underlying principles of MDL are given by (Nannen, 2003a,b). In a nutshell, MDL is a formal

92 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

implementation of the well known principle of the Occam’s razor which states that “entities must not be mul-

tiplied beyond necessity”9. In other words, if several models can explain the same set of data, the simplest is

most likely to be the correct one. Although appealing, this philosophical principle should be considered with

extreme care, especially because the notion of ‘simplest’ is quite unclear. Without care, it is virtually possible

to consider as the simplest any set of hyperparameters.

The formal definition of the MDL criterion is actually exactly the same10 than the definition of the BIC, i.e. :

MDL = − log(L) + k

2
log(n). (3.65)

The fundamental difference between BIC and MDL lies in their theoretical roots. Indeed, MDL relies on in-

formation theory and, in particular, the Kolmogorov complexity. The Kolmogorov complexity, also known as

the algorithmic complexity or Turing complexity, is a concept that was independently developed by (Chaitin,

1966; Kolmogorov, 1965; Solomonoff, 1964). In a nutshell, it measures the complexity of a message (which

can be seen as a particular way of describing a parametric model) as the length of the minimal Turing machine

that generates this same message. Unfortunately, the Kolmogorov complexity cannot be calculated because it

is related to the famous halting problem which was proven by Turing (1936) to be incomputable. Fortunately,

a famous theorem due to (Shannon, 1948) gives a lower bound for the Kolmogorov complexity:

E[len(z)] ≥ −
∫

P (z) log2(z)dz, (3.66)

where len(z) is the length of the binary string encoding the continuous random variable z of distribution P (z).

A consequence of this theorem is that encoding a continuous random variable z of distribution P (z) requires

approximately − log2(P (z)) bits of information11. We replace the binary logarithm by the log function since

the only difference is an unimportant multiplicative constant. Let us now consider the dataset made of the inputs

X = {xi}ni=1 and of the outputs Y = {yi}ni=1. The required length for encoding Y is the sum of the length

required to encode the parameters of a model and of the length required to encode the discrepancy between the

true model and the actual measurement, i.e. :

− log(P (Y |p, f,X))− log(P (p|f)). (3.67)

The first term is the negative logarithm of the posterior probability while the second term is the average length

for encoding the parameters. (Rissanen, 1978) postulated from results by (Shannon, 1948) that the length of the

code for p was log(
√
n) for each parameter, hence the final expression of MDL. Minimizing the MDL criterion

is therefore equivalent to determine the simplest representation of the data, which is why MDL is considered as

a formal implementation of the Occam’s razor principle.

3.2.2.7 Other Approaches

L-curve, Morozov’s discrepancy principle. In addition to the very generic and widely spread criteria pre-

sented in the previous section to automatically compute hyperparameters, there exists others more specific (and

generally less-known) approach to determine hyperparameters. Some of these criteria (such as the L-curve or

the Morozov’s discrepancy principle) will be used in this document. Given their lack of generality, we do not

9entia non sunt multiplicanda praeter necessitatem (as it was said in a time where English had not overruled everything else)
10Except for a multiplicative positive constant which plays no role since the goal is to minimize the criterion.
11Note that here we do not bother with the precision of the representation of z which may be infinite since it is a real number but

which may be reasonably approximated.

3.2 HYPERPARAMETERS 93

review them in this section. Instead, we will detail them when appropriate in the document.

One. Although it is not a founded approach, it appears that one of the most common technique to determine

hyperparameters is probably to give them some empirical value determined by hand. A very popular choice

is the value 1. This is what we call, with a bit of irony we must admit, the ‘λ = 1 approach’. Note that this

trivial approach has been proved to give reasonable results in many problems (at least with appropriately chosen

instances of these problems). This is probably why a lot of researchers do not believe that the determination of

the hyperparameters is a problem of interest. In our work, we beg to differ and we will, as much as possible,

give details on how hyperparameters are chosen.

Selection of the hyperparameters based on experiments. Another common approach is to determine typi-

cal values for the hyperparameters by looking at the results of extensive experiments. This type of approach has

been used in, for instance, (Pilet et al., 2008; Pizarro and Bartoli, 2010). Even though the exact way in which

hyperparameters are selected is not always mentioned in scientific papers, we can imagine that most authors

use extensive experimentations to determine typical values. Note that, sometimes, ‘typical values’ do not exist.

This is the case when there exists an important variability between instances of the same problem. For instance,

it is not reasonable to consider that there exists a set of typical hyperparameters for range surface fitting (see

chapter 4). Indeed, in this case, the choice of the hyperparameters heavily relies on the shape of the observed

scene.

94 Chapter 3. GENERAL POINTS ON PARAMETER AND HYPERPARAMETER ESTIMATION

95

Chapter 4
Range Surface Fitting

Transforming a discrete representation of a surface

(i.e. a finite set of 3D points) into a smooth and analyti-

cal form is a problem of wide interest. Such a representa-

tion can then be used for complex computations such as

the estimation of geodesic distances. Finding a smooth

surface that approximates a set of 3D points has other ad-

vantages. In particular, it allows one to reduce the amount

of noise inherent to datasets acquired with real sensors

such as Time-of-Flight cameras. A large part of our work

is dedicated to this problem in the case of range data.

In this chapter, we tackle the problem of fitting an an-

alytic surface to range data. We start by giving the first

definitions and concepts related to range data. In particu-

lar, we give a brief review of the sensors and techniques

that allows one to acquire range data. We also give an in-

troductory and practical example that allows us to explain

the basic concepts of range data fitting. This example can

also be considered as a practical implementation of the

concepts related to parameters and hyperparameters es-

timation that were reviewed in the previous two chapters.

We then present our contributions related to range

data fitting. We propose two main contributions which

will be presented in separate sections. First, we pro-

pose a new criterion, the L-Tangent Norm, that enables

one to automatically select the regularization trade-off in

range surface fitting (Brunet et al., 2008). Second, we

propose a method for fitting a surface to range data with

heteroskedastic noise, i.e. noise whose variance is not the

same for all the data points (Brunet et al., 2009a). By ex-

ploiting the fact that the data are arranged on a regular

grid, our method features a low computational complexity.

96 Chapter 4. RANGE SURFACE FITTING

4.1 First Definitions and Concepts

4.1.1 First Definitions

Range surface. A range surface is a particular type of 3D surface. It is different from a general 3D surface

in the sense that it is defined as a set of depths with respect to 2D coordinates. A topographic map is a good

example of range surface: to each pair (longitude, latitude) is associated an altitude. In a manner of speaking,

range surfaces are a subset of general 3D surfaces. This is the reason why range surfaces are sometimes called

2.5D surfaces. An example of range surface is a 3D scene observed from a single point of view. Compared to a

full 3D surface, a range surface may introduce difficulties. Indeed, even if we consider a continuous 3D world,

the range surface corresponding to a point of view may have discontinuities. Discontinuities are generally hard

to handle.

Mathematically speaking, range surfaces are adequately modelled by scalar-valued functions from R2 (or a

subset of it) to R. Such surfaces are also known as Monge patches (Gray, 1997). Figure 4.1 gives an example

of range surface.

Figure 4.1: An example of range surface. In a range surface, an elevation is associated to each couple of 2D points on the

plane of the grey grid.

Range data. Range data are data points which follow the same principle as range surfaces. Range data points

are written using the following notation:

x↔ z, (4.1)

where z ∈ R is the altitude (or elevation, or depth) corresponding to the 2D point x ∈ R2. Note that
[
xT z

]T

is a classical 3D point. An example of range data points is given in figure 4.2.

Figure 4.2: An example of range data points (black dots). The coloured segments represent the depth of each point.

4.1 FIRST DEFINITIONS AND CONCEPTS 97

Depth map. A depth map is a set of range data points organized on a regular and uniformly spaced grid1. In

other words, a depth map is like a standard digital picture (i.e. an array of numbers each one of which coding

for a colour or a level of grey) but the numbers represent distances instead of colours. The individual elements

of a depth map are still named pixels even though they are not ‘little squares of colours’ but elementary pieces

of surface.

4.1.2 Acquisition of Range Data

Nowadays, there exists many approaches and sensors to acquire range data. We emphasize here that the ac-

quisition of range data is not the central topic of this thesis. We are more interested in the processing of range

data than in its acquisition. Therefore, we only give a brief overview of the ways in which range data may be

acquired.

4.1.2.1 Generalities

The devices that allows one to acquire range data may be categorized into two classes:

Passive sensors. The central part of the capturing device is a ‘simple’ passive sensor such as a CMOS or a CCD

sensor. Nothing is emitted from the device. The acquisition of range data with such sensors is therefore

completely non-intrusive in the sense that the observed scene is not ‘modified’ for the acquisition. The

main part of these approaches generally relies on complex algorithms.

Active sensors. In a way or another, the capturing device illuminates the scene in order to get supplementary

information about its geometry. The data acquired with such sensors are generally of better quality

than with passive sensors. However, these sensors are more invasive2 than passive sensors. Complex

algorithms are also used in the acquisition process.

4.1.2.2 Passive Sensors

We give here a non-exhaustive list of passive technique for acquiring range data. As we already mentioned,

we do not pretend to make a detailed review on range data acquisition. However, each one of the succinctly

described method is associated to some references. It is a common practice to name these techniques with the

prefix ‘Shape-from-’. As a casual remark, it would have been more correct to use the prefix ‘Range-from-’.

Shape-from-Stereo (stereo reconstruction). Stereo reconstruction is an important problem in computer vi-

sion which has been addressed in many ways. In a certain sense, it consists in emulating the human vision

by exploiting the discrepancies between two images of the same scene taken from a different point of view.

The core principle is to use the discrepancies between two images of the same scene to infer 3D information.

This may be achieved using, for instance, point triangulation and epipolar geometry (see figure 4.3). The in-

terested reader may found a complete review of such techniques in documents such as (Bartoli and Sturm,

2004; Faugeras, 1993; Faugeras et al., 2004; Hartley and Zisserman, 2003a; Xú and Zhang, 1996). Other ap-

proaches exist such as the reconstruction of discrepancy maps (Boykov et al., 2001; Kanade and Okutomi,

1991; Scharstein and Szeliski, 1998)

1As for standard digital pictures, extensions to non-uniform grids could be envisaged but we take the side of not considering them

in this manuscript.
2Although there are now active sensors that illuminates the scene using infra-red (or ‘near infra-red’) wavelengths which are not

visible to the human eye.

98 Chapter 4. RANGE SURFACE FITTING

Figure 4.3: Illustration of the basic principles of shape-from-stereo (stereo reconstruction). The reconstruction of a 3D point

may be achieved using the epipolar geometry.

Shape-from-Shading. Shape-from-shading is a technique that reconstruct the 3D structure of a scene from

the lighting of the object. Detailed information on shape-from-shading may be found in (Zhang et al., 1999).

Usually, some general assumptions are made. For instance, one may consider that there is only one light source.

One may further assume that the surfaces of the scene exhibits Lambertian reflectance which means that the

intensity reflected by a surface to an observer is the same regardless of the observer’s angle of view. We may

then apply the Lambert’s cosine law which state that the intensity is of a surface at a given point is given by:

is = lTncil, (4.2)

with l a vector pointing from the surface to the light source, n the surface’s normal vector, c the colour of

the surface, and il the intensity of the light source (see figure 4.4). By definition of the scalar product of two

vectors, we then have that

lTn = ‖n‖‖l‖ cos(α), (4.3)

where α is the angle between the vectors n and l. In shape-from-shading, the observed intensity is used to

compute a field of normal vectors of the surface with equation (4.3). This field is then integrated to reconstruct

the surface.

Figure 4.4: Illustration of Shape-from-Shading. Under some assumptions about the observed surface and the lighting condi-

tions, it is possible to retrieve a field of normal vectors from the colour of the surface. The actual 3D surface is obtained by

integrating the vector field.

Shape-from-Motion. Shape-from-Motion is a technique that retrieve the shape of a scene from the spatial and

temporal changes occurring in an image sequence. More details on this technique may be found in (Bartoli and

Sturm, 2005; Del Bue and Agapito, 2006, 2007; Olsen and Bartoli, 2008; Tomasi and Kanade, 1992). To some

4.1 FIRST DEFINITIONS AND CONCEPTS 99

extent, it is similar to shape-from-stereo. There are nonetheless some important differences. In particular, the

typical discrepancies between two successive images are much smaller than those of typical stereo pairs. This

makes shape-from-motion more sensible to noise than shape-from-stereo. Another important difference is the

fact that the transformation linking two consecutive frames is not necessarily a single rigid 3D transformation.

Compared to shape-from-motion, shape-from-motion has its advantages. For instance, pixel correspondences

may be easier to find with shape-from-motion since the baseline is smaller than with typical shape-from-stereo.

Shape-from-Focus. Shape-from-focus is a technique that reconstruct range data by acquiring two or more

images of the same scene under various focus settings (Nayar and Nakagawa, 1994). Once the best focused

image is found, a model that links focus and distance is used to determine the distance.

Shape-from-Texture. Shape-from-texture is a technique that relies on the deformation of the individual texels

(texture elements) to retrieve 3D information from a scene. Complementary information on this technique may

be found in (Aloimonos, 1988). The shape reconstruction typically exploits two types of distortion: perspective

and foreshortening transformations (see figure 4.5). The perspective distortion makes the objects far from the

camera appear smaller. The foreshortening distortion makes objects not parallel to the image plane shorter. It

is possible to estimate the amount of those distortions from the textures contained in an image. As for other

methods described in this section, the raw output of this algorithm is a discrete field of normal vector to the

observed surface. If this field is dense enough and if the assumption of a smooth surface is made, then it is

possible to recover the whole surface shape.

Figure 4.5: Illustration of Shape-from-Texture. This technique exploits the local transformations (perspective and foreshortening

deformations) of the texture to reconstruct a field of normal vectors to the surface.

4.1.2.3 Active Sensors

We now explain the basic principles of a few active sensors used to acquire range data. We only consider

sensors commonly used in computer vision.

Structured light. Structured light is a technique to reconstruct the geometry of the scene that uses a light

projector and an intensity camera placed at a distance from each other. Detailed information on this technique

may be found in (Zhang, 2005). The projector emits a light pattern (whose shape is perfectly known). For

instance, the pattern may be a simple line. From the point of view of the camera, the projected line is a

distorted curve whose shape depends on the shape of the scene.

Laser-based sensors (LIDAR). LIDAR (LIght Detection And Ranging) is an optical sensor that measures

properties of reflected light to determine the distance of a distant target. The LIDAR technology is also known

under the acronym LADAR (LAser Detection And Ranging). In a nutshell, it relies on the same principles as

100 Chapter 4. RANGE SURFACE FITTING

Figure 4.6: Basic principles of 3D reconstruction using structured light: a pattern with known shape is projected on the scene.

A camera observes the pattern. An algorithm deduces the shape of the scene from the deformation of the pattern.

the standard RADAR. The main difference is that RADAR uses radio waves while LIDAR uses much shorter

wavelength (typically in the ultraviolet, visible, or near infrared range). Given the fact that such sensors are

generally not able to detect objects smaller than the wavelength they use, LIDAR is able has a much finer

resolution than RADAR. The distance of an object is determined by measuring the time delay between the

transmission of a pulse and detection of the reflected signal (see figure 4.7). A laser has a very narrow beam.

This allows one to make a measurements at a very fine precision. Note that the measurements are generally

‘point-wise’, i.e. the distance of only one point is computed. Having a complete range map of a scene requires

one to make multiple measurements. Since there is necessarily a delay between two measurements, it can be a

problem if the scene is not strictly rigid.

Figure 4.7: Basic principle of LADAR. With this technique, point-wise measurements of depths are achieved by measuring the

time delay between the emission of a laser pulse and the reception of that pulse by a special sensor.

Time-of-Flight Cameras The general principle of time-of-flight (ToF) cameras is similar to that of LIDAR

sensors. However ToF cameras have the advantage of being able to capture a whole scene at the same time.

Besides, ToF cameras can provide up to 100 images (range maps) per second. Additional informations on ToF

cameras may be found in (Falie and Buzuloiu, 2007; Gokturk et al., 2004; Luan, 2001; Viarani et al., 2004; Xu

4.1 FIRST DEFINITIONS AND CONCEPTS 101

et al., 2005). ToF cameras have been used in many fields such as medical imaging (Penne et al., 2009; Ulrich

et al., 2010), augmented reality (Bartczak et al., 2008; Koch et al., 2009), intelligent vehicles (Hsu et al., 2006).

The general principle of ToF cameras is illustrated in figure 4.8. The device is made of two parts: a near

infrared light source and an optical sensor. The light source emits a phase-modulated signal. The optical sensor

is a ‘variant’ of a standard CMOS sensor: in addition to the intensity of the reflected light, it is also able

to capture the phase of the received signal. The signal modulation is synchronized between the light source

and the optical sensor. For each pixel of the optical sensor, the depth is computed by comparing the current

phase modulation (at the time of reception) with the phase of the received signal. Note that there exist ToF

cameras that use slightly different principle for retrieving depths. However, the principle described above is

the one used by the cameras we had access to, namely the products from PMDTec3 (cameras 19k-S) and Mesa

Imaging4 (SwissRanger 3000 and SwissRanger 4000).

Light
emitter

Current phase of
the light emitter

time

3D surface
(viewed from top)

Phase shift

distance

Figure 4.8: Basic principle of ToF cameras. ToF cameras are able to capture range maps by measuring a phase delay for each

one of the pixels.

Although very useful and efficient, ToF cameras have also some drawbacks. For instance, they have a

resolution which is quite limited if we compare them to the typical resolutions of standard digital cameras.

The range of non-ambiguous distances is also limited: typically 7 metres. This range may be increased but

it is achieved to the detriment of the depth precision. Another drawback of ToF cameras is that the depth

measurements are influenced by the material (mainly by its reflexivity). The accuracy of the measurements

are also influenced by multiple reflexions of the emitted infrared signal (this phenomenon often happens when

the observed scene has concave corners). The measurements may also be perturbed by ambient light. As

a consequence of these drawbacks, the depth maps acquired with ToF cameras are usually extremely noisy.

However, one should put these disadvantages into perspective since ToF cameras are amongst the only sensors

able to provide 3D information in real-time (and with a high acquisition rate) regardless of the appearance of

the observed scene5.

3http://www.pmdtec.com
4http://www.mesa-imaging.ch
5Contrarily to other approaches such as shape-from-texture or shape-from-shading which work only under some quite strong as-

sumptions on the scene.

102 Chapter 4. RANGE SURFACE FITTING

4.1.3 An Introductory Example

In this section, we present an example that illustrates the basic principle for fitting a parametric surface to range

data. More generally, this example is also the occasion to make concrete the theoretical tools presented in the

previous chapters. In particular, we will show how parametric estimation can be achieved with range data. We

also give an example of automatic hyperparameter selection. More advanced topics on range surface fitting,

including our contributions, will come later in this chapter.

Data. In this example, we use geographical range data extracted from a topographic map6. The data, shown

in figure 4.9, represent Puy Pariou, an extinct volcano near Clermont-Ferrand. Here, the data does not have

any particular structure. In particular, the data points are not arranged on a regular grid. As they were extracted

manually from a topographic map, there is not much noise in the data points.

1355

1255

1255

1155

1155

1555

A
lti
tu
de

 (m
et

er
s)

5

5.5

1
5

5.5

1

Longitude (arbitrary unit)

La
tit
ud
e

(a
rb

itr
ar

y
un

it)

(a) (b)

Figure 4.9: Example of range data representing the Puy Pariou, a volcano in Chaı̂ne des Puys next to Clermont-Ferrand,

France. (a) Data represented as points. (b) Data represented with contour lines.

Range Surface Fitting. We now give an (oversimplified) approach to range surface fitting. Given a set of

range data points {xi ↔ zi}ni=1, the goal of range surface fitting is to find a function f : R2 → R that fits the

data point, i.e.:

f(xi) = zi ∀i ∈ J1, nK. (4.4)

In practice, the equality in equation (4.4) does not make much sense. Indeed, there is usually noise in the data

points. This noise can come from the underlying physics of the sensor used to acquire the data (such as a

Time-of-Flight camera or a LIDAR). Let us note f the true surface. The available data may be seen as a noisy

discretization of the true surface, i.e.:

zi = f(xi) + εi, (4.5)

where the εi (for i ∈ J1, nK) are random variables. The goal of range surface fitting is to find a function f as

close as possible of f .

This problem can be turned into a parameter estimation problem. It means that the range surface fitting

problem will be formulated as a minimization problem, that consists in finding a set of parameters p⋆ that

minimizes a certain cost function. From this point of view, one must answer the following five questions:

• What parametric model should we use?

• What is the probability distribution of the noise (given equation (4.5), we have already assume that the

noise is additive)?

6The data were retrieved from www.geoportail.fr

4.1 FIRST DEFINITIONS AND CONCEPTS 103

• What assumptions (priors) can we make about the surface to reconstruct?

• What optimization algorithm can be used?

• How can the hyperparameters be automatically selected?

In the next paragraphs, we discuss these five points and illustrate them using our example of range surface

fitting with simplified assumptions. Note that this set of five questions is quite generic in the sense that they

have to be answered for almost any parametric estimation problem.

What parametric model should we use? The choice of a correct parametric model is important. It must be

flexible enough to be able to model correctly the data. Ideally, the true surface f should be a special case of

the parametric model. In other words, if f : R2 ×Rp → R is the parametric function model, there should exist

a set of parameters p such that f = f(•;p). In practice, such a condition is difficult to satisfy because f is

unknown and it may vary in great proportion. Therefore, the function model f is just expected to have enough

degrees of freedom. One should also take care of the fact that the parametric model should be simple enough

in order to get tractable computations.

For the range surface fitting problem, we may use a uniform cubic B-spline model with a relatively high

number of control points. This choice is motivated by the fact that such a model is quite generic, has a high

number of degree of freedom, and generally leads to ‘simple’ computations.

What is the ‘nature’ of the noise? Determining the ‘nature’ of the noise allows one to derive a proper cost

function using, for instance, one of the statistical approaches presented in section 3.1.1, namely Maximum

Likelihood Estimation (MLE) or Maximum A Posteriori Estimation (MAP). A good model of the noise is

particularly important to cope with noise and outliers.

In our specific example, we consider that the errors εi (for i ∈ J1, nK) are all normally-distributed with

zero mean and that they all have the same variance. We also assume that the errors are independent. Such

an hypothesis on the noise is generally a reasonable choice. Besides, it naturally leads to a least-squares

optimization problem, as explained in section 3.1.2.1.

What assumptions (priors) can we make about the surface to reconstruct? A proper parametric model

and a proper model of noise may not be sufficient to fit a surface to range data. For example, if the number

of degrees of freedom of the parametric model is greater than the number of data points, it will result in an

under-constrained problem. Even if there are enough data points, there still can be ambiguities due to the noise:

is a small bump in the data just a noisy measurement or the true shape of the surface? These problems can be

addressed by using a MAP estimation scheme with extra assumptions on the surface. For instance, one may

require the surface to be ‘smooth’.

In our example, we want the surface to minimize the bending energy (while still being close to the data

points, of course). The bending energy is defined by:

B(p) =

∫∫

R2

(
∂2f

∂x2
(x;p)

)2

+ 2

(
∂2f

∂x∂y
(x;p)

)2

+

(
∂2f

∂y2
(x;p)

)2

dx. (4.6)

More will come about the bending energy in the sequel of this document. For now, let us just say that the lower

the bending energy the smoother the surface and that a surface of minimal bending energy is a plane. Imposing

a small bending energy can be seen as a physical prior on the surface. Indeed, it is equivalent to say that a set of

104 Chapter 4. RANGE SURFACE FITTING

parameters leading to a smooth surface is more probable than another set of parameters. This can be formulated

in statistical terms by saying that, for instance, we have a prior probability defined as:

P (p) ∝ exp(−λB(p)). (4.7)

Such an expression makes surfaces with minimal bending energy the most probable surfaces and this probability

decreases when the bending energy becomes higher. The parameter λ controls the width of the bell-shaped

curve defined by equation (4.7). A small λ results in a wide bell-shaped curve which means that surfaces with

high bending energy are possible with a reasonably high probability. On the contrary, a high value for λ results

in a narrow bell-shaped curve which is equivalent to say that surface with high bending energy are utmost

improbable.

What optimization algorithm can be used? The assumptions made on the noise and on the surface prior

together with the MAP principle leads to the following minimization problem:

min
p

n∑

i=1

(f(xi;p)− zi)2 + λB(p). (4.8)

Since we decided to use the B-spline model and given the expression of the bending energyB, the cost function

in equation (4.8) is a sum of squared terms, each one of which being linear with respect to the parameters p.

Consequently, equation (4.8) is a linear least squares minimization problem. The tools and algorithms de-

scribed in section 2.2.2.6, section 2.2.2.8, section 2.2.2.9, and section 2.2.2.10 can thus be used to solve this

minimization problem.

How can the hyperparameters be automatically selected? In this example, we consider that the only hy-

perparameter of interest is the regularisation parameter λ in problem (4.8). It is reasonable to make this

assumption. Indeed, one could also have considered the number of control points of the B-spline. We think

that, in this context, it is simpler to consider a large number of control points. The resulting high complexity of

the model is then compensated by the regularisation prior.

In this example, we have decided to use the ordinary cross-validation approach to automatically determine

a proper value for the regularization parameter. Since problem (4.8) is a linear least-squares optimization

problem, it is possible to use the closed-form formula for computing this criterion. The profile of the cross-

validation criterion is give in figure 4.10.

0 2 4 6 8 10 12 14 16 18 20
0

10

20

30

40

0 0.1
2.2

4.2
LOOCVa

LOOCVa

Figure 4.10: Ordinary cross-validation score function (LOOCVa) for selecting the regularization parameter λ in our example of

range surface fitting. Here, the optimal value is λ = 0.015.

4.2 THE L-TANGENT NORM 105

Final results. The final result of the range surface fitting process is shown in figure 4.11 (b). Figures 4.11

(a) and (c) respectively illustrate the overfitting and underfitting phenomena that arise if the regularization

parameter is not properly chosen.

(a) λ = 10−4 (b) λ = 0.015 (c) λ = 2

Figure 4.11: Final results for our example of range surface fitting. (a) Overfitting phenomenon (the prior on the regularisation

is not strong enough and, consequently, the complexity of the surface model is much larger than the actual complexity of the

data). (b) Correct regularization parameter chosen by minimizing the cross-validation criterion. (c) Underfitting phenomenon

(the large regularization parameter overly reduces the effective complexity of the model).

4.2 The L-Tangent Norm

In this section, we expose one of our contributions concerning range surface fitting. This work was first pub-

lished in (Brunet et al., 2008). As it was previously presented, range surface fitting is commonly achieved

by minimizing a compound cost function that includes two terms: a goodness of fit term and a regularization

term. The trade-off between these two terms is controlled by the so-called regularization parameter. Many

approaches can be used to determine automatically a proper value for this hyperparameters. Some, such as the

cross-validation, are very generic. We already reviewed them in section 3.2.2. Some others are more specific

in the sense that they have been designed to work with the type of cost function considered in this section, i.e.

a mix of a data term and a regularization term. This is the case of the L-curve approach (which will be detailed

later in this section). However, all these methods are not fully satisfactory. Indeed, the methods based on

cross-validation generally suffer from their computational complexity. The L-curve is more efficient in terms

of the computational burden but the resulting criterion is hard to minimize in the sense that there are usually

many local minima. Therefore, we propose a new criterion to tune the regularization parameter in the context

of range surface fitting. We called this new criterion the L-Tangent Norm (LTN). Even though empirical, the

LTN gives sensible results with a much lower computational cost.

This section is organized as follows. Firstly, we give supplemental details on range surface fitting. In

particular, we give the details on the bending energy term for the B-spline model. Secondly, we review another

criterion for hyperparameter selection: the L-curve criterion. Thirdly, we present our new criterion: the L-

Tangent Norm. Finally, we conclude with some experimental results on both synthetic and real data.

4.2.1 Supplementary Details on Range Surface Fitting

4.2.1.1 Generalities

The main building blocks of range surface fitting have been presented in the introductory example of sec-

tion 4.1.3. In this section, we also use the B-spline model to represent the surface. We use the same principle

106 Chapter 4. RANGE SURFACE FITTING

as the one utilized in the introductory example. However, we use a slightly different way of writing it:

min
p
Ed(p) +

λ

1− λEr(p), (4.9)

where Ed is the data term that measures the discrepancy between the fitted surface and the data, and Er is

the bending energy term that measures how ‘smooth’ the surface is. Besides, the regularization parameter is

reparametrized so that it lies within [0, 1[instead of [0,∞[. If we denote by f : R2 × Rp → R the parametric

model of surface, then we have that:

Ed(p) =
1

n

n∑

i=1

(f(qi;p)− zi)2 , (4.10)

and Er(p) =
∫∫

Ω

2∑

d=0

(
2

d

)(
∂2f(•;p)

∂x2−d∂yd

)2

dxdy, (4.11)

whereΩ ⊂ R2 is the definition domain of the range surface. It can be chosen as, for instance, the bounding box

of the data points. Since f is a tensor-product B-spline, it can be written as a linear combination of the control

points, i.e. :

f(q;p) = nT

qp, (4.12)

where wq is the vector defined by (with qT = (x y)):

nT

q =
(

N−3(x)N−3(y) . . . N−3(x)Np(y) . . . Np(x)Np(y)
)

(4.13)

Consequently the data term Ed can be written in matrix form:

Ed(p) =
1

n
‖Np− z‖2 , (4.14)

where N ∈ Rn×p is the matrix such that NT =
[

nq1 . . . nqn

]

and z ∈ Rn is obtained by stacking the depth

of the data points, i.e. zT =
(

z1 . . . zn

)

. The bending term can also be written as the squared norm of some

vector. One trivial way of doing it would be to approximate the bending energy term of equation (4.11) by

discretizing the integral over a regular grid:

Er(p) ≈
1

ab

a−1∑

i=0

b−1∑

j=0

2∑

d=0

(
2

d

)(

∂2f(ia ,
j
b ;p)

∂x2−d∂yd

)2

. (4.15)

Since the second derivatives of a B-spline are also linear with respect to the control points, the approximation

of equation (4.15) is a sum of squared terms linear with respect to the parameters. Even though this approach

is effective in practice, there is a better way to write the bending energy term as a squared norm of a vector.

Indeed, we showed that it was possible to get an exact formula for the bending energy of the form:

Er(p) = ‖Bp‖2 , (4.16)

where B ∈ Rp×p is a matrix that we call the bending matrix. The details of the computations of the bending

matrix will be given in section 4.2.1.2. For now, let us just assume that the matrix B exists. Given all the

previous elements, the initial minimization problem of equation (4.9) is equivalent to the following linear least-

4.2 THE L-TANGENT NORM 107

squares minimization problem in matrix form:

min
p

∥
∥
∥
∥
∥

[

N

nλ
1−λB

]

p−
[

z

0

]∥
∥
∥
∥
∥

2

. (4.17)

The solution to this problem is given by using, for instance, the normal equations. For a given regularization

parameter λ ∈ [0, 1[, we get that:

p⋆
λ =

(

NTN+

(
nλ

1− λ

)2

BTB

)−1

NTz. (4.18)

4.2.1.2 The Bending Matrix

In this section, we show how the bending matrix B can be derived and practically computed. To the best of our

knowledge, the practical computation of the bending matrix cannot be found in the literature. For the sake of

simplicity, we first consider the case of a univariate and scalar-valued B-spline. For the same reasons, we also

restrict this section to uniform cubic B-splines, which is the flavour of B-spline the most used in this thesis.

Let f be the B-spline with knot sequence k−3 < . . . < kn+3. We consider the bending energy over the natural

definition domain of the B-spline, i.e. :

b(p) =

∫ kn

k0

(
∂2f(x;p)

∂x2

)2

dx. (4.19)

The integral bending energy can be divided on each knot interval and, therefore, equation (4.19) can be rewritten

as:

b(p) =
n−1∑

j=0

∫ kj+1

kj

(
∂2f(x;p)

∂x2

)2

dx. (4.20)

As we have seen in section 2.3.2.3, the B-spline f may written as:

f(x;p) =

3∑

i=0

pι(x)+ibi(o(x)), (4.21)

where the four functions bi (for i ∈ J0, 3K) are the pieces of the B-spline basis functions. The functions ι and o

were defined in section 2.3.2.3. A similar notation is possible for the derivatives of the B-spline:

∂df

∂xd
(x;p) =

1

sd

3∑

i=0

pι(x)+ibi,d(o(x)), (4.22)

where s is the width of a knot interval (i.e. s = ki+1 − ki for all i ∈ J−3, n + 2K). The function bi,d is the

derivative of the d-th order of the function bi (for i ∈ J0, 3K). In particular, for the second derivatives (d = 2),

we have that:

b0,2(x) = −x+ 1, (4.23)

b1,2(x) = 3x− 2, (4.24)

b2,2(x) = −3x+ 1, (4.25)

b3,2(x) = x. (4.26)

108 Chapter 4. RANGE SURFACE FITTING

Reminder. Here is a formula which will be useful for the computation of the bending matrix: the integration

by substitution. It is given by:
∫ φ(b)

φ(a)
f(x)dx =

∫ b

a
f(φ(t))φ′(t)dt. (4.27)

Actual computation. We now compute ej(p) i.e. the bending energy of a B-spline over the knot interval

[kj , kj+1].

ej(p) =

∫ kj+1

kj

(
∂2f

∂x2
(x;p)

)2

dx (4.28)

=
1

s4

∫ kj+1

kj

(
3∑

i=0

pj+ibi,2(o(x))

)2

dx (4.29)

=
1

s3

∫ kj+1

kj

(
3∑

i=0

pj+ibi,2(o(x))

)2
1

s
dx (4.30)

=
1

s3

∫ o(kj+1)

o(kj)

(
3∑

i=0

pj+ibi,2(x)

)2

dx (4.31)

=
1

s3

∫ 1

0

(
3∑

i=0

pj+ibi,2(x)

)2

dx (4.32)

=
1

s3

∫ 1

0

(
(

x 1
3 0 0

)
(

−1 3 −3 1

3 −6 3 0

−3 0 3 0

1 4 1 0

)(
pj

pj+1

pj+2

pj+3

))2

dx (4.33)

=
1

s3

∫ 1

0

((

x 1
3 0 0

)

Mp̄
)2

dx (4.34)

=
1

s3

∫ 1

0
p̄TMT

(
x2 x

3
0 0

x
3

1
9

0 0

0 0 0 0

0 0 0 0

)

Mp̄dx (4.35)

=
1

s3

∫ 1

0
p̄T

(
−1 3

3 −6

−3 3

1 0

)
(

x2 x
3

x
3

1
9

)(
−1 3 −3 1

3 −6 3 0

)

p̄dx (4.36)

=
1

s3

∫ 1

0
p̄TMT

2

(
x2 x

3
x
3

1
9

)

M2p̄dx (4.37)

=
1

s3
p̄TMT

2

(∫ 1

0

(
x2 x

3
x
3

1
9

)

dx

)

M2p̄ (4.38)

=
1

s3
p̄TMT

2

[(
x3/3 x2/6

x2/6 x/9

)]1

0
M2p̄ (4.39)

=
1

s3
p̄TMT

2

(
1/3 1/6

1/6 1/9

)

M2p̄ (4.40)

=
1

s3
p̄T

1

6

(
2 −3 0 1

−3 6 −3 0

0 −3 6 −3

1 0 −3 2

)

p̄ (4.41)

=
1

s3
p̄TB̄p̄ with B̄

(
2 −3 0 1

−3 6 −3 0

0 −3 6 −3

1 0 −3 2

)

(4.42)

=
1

s3
pTBjp (4.43)

4.2 THE L-TANGENT NORM 109

where Bj is the matrix defined as:

Bj =

0j×j 0j×4 0j×(n−j−4)

04×j B̄ 04×(n−j−4)

0(n−j−4)×j 0(n−j−4)×4 0(n−j−4)×(n−j−4)

 (4.44)

The bending matrix for the bending energy over the entire natural definition domain is obtained by summing

the bending matrix for single knot intervals. Therefore, if we define the bending matrix as:

B =
1

s3

n−1∑

i=0

Bi, (4.45)

then the bending energy is given by:

b(p) = pTBp =
∥
∥
∥B

1/2p
∥
∥
∥

2
. (4.46)

Note that in practice, one generally does not need to explicitly compute a square root of the matrix B. This

stems from the fact that it is usually the form pTBp which is used in practical computations.

The bending matrix is interesting for several reasons. Of course, it is nice to have an exact formula of

the bending energy that can easily be integrated into a linear least-squares optimization problem. Besides, the

bending matrix as defined in equation (4.45) is a sparse matrix. Indeed, B is an heptadiagonal symmetric matrix.

This sparsity structure allows one to use efficient optimization algorithms. The last interesting property of this

bending matrix is that it is usually much smaller that the matrix that would arise by using the approximation of

equation (4.15). Indeed, B is a matrix of R(n+3)×(n+3). With the approximate formula, the resulting matrix has

usually much more rows (it depends on the fineness of the grid used for the discretization of the integral).

The bivariate case. We now derive an exact formula for the bending energy term for bivariate spline. This

derivation follows the same principle as the one used for the univariate case. Let f be the uniform cubic tensor-

product bi-variate B-spline with knots kx−3 < . . . < kxm+3 along the x direction and ky−3 < . . . < kyn+3 along

the y direction. The bending energy, denoted e, is defined by:

e(p) =

∫ kyn

ky0

∫ kxm

kx0

(
∂2f

∂x2
(x, y;p)

)2

+ 2

(
∂2f

∂x∂y
(x, y;p)

)2

+

(
∂2f

∂y2
(x, y;p)

)2

dxdy. (4.47)

As in the univariate case, the bending energy term over the entire natural definition domain can be split on each

knot domain:

e(p) =

n−1∑

b=0

m−1∑

a=0

ea,b(p), (4.48)

110 Chapter 4. RANGE SURFACE FITTING

where ea,b(p) is the bending energy of the B-spline over the knot domain [kxa , k
x
a+1]× [kyb , k

y
b+1]. The bending

energy ea,b(p) can be further split in three terms:

ea,b(p) =

∫ kyb+1

kyb

∫ kxa+1

kxa

(
∂2f

∂x2
(x, y)

)2

dxdy

+ 2

∫ kyb+1

kyb

∫ kxa+1

kxa

(
∂2f

∂x∂y
(x, y)

)2

dxdy

+

∫ kyb+1

kyb

∫ kxa+1

kxa

(
∂2f

∂y2
(x, y)

)2

dxdy (4.49)

We will give the details of the computation only for the first term in equation (4.49) since the two other terms

are computed in an almost identical way. But before that, we define a few other notation. As it was explained

in section 2.3.2.5, the bivariate B-spline can be written as:

f(x, y;p) =
(

rTo(y) ⊗ rTo(x)

)

(MG ⊗MG)vect(P̄), (4.50)

where P̄ = Pι(x):ι(x)+3,ι(y):ι(y)+3, MG is the geometric matrix (defined in equation (2.99)), and ro(x) is the

vector of R4 defined as a function of the free variable x by:

rTo(x) =
(

o(x)3 o(x)2 o(x) 1
)

. (4.51)

The partial derivatives of the bi-variate spline can be written in a similar way:

∂c+df

∂xc∂yd
(x, y;p) =

(

rTo(y),d ⊗ rTo(x),c

)

(MG ⊗MG) vect(p̄), (4.52)

where ro(x),c is the derivative of the cth order of the vector ro(x). Along the x direction, these vectors are given

by:

ro(x),0 = ro(x), (4.53)

ro(x),1 =
1

sx

(

3o(x)2 2o(x) 1 0
)

, (4.54)

ro(x),2 =
1

s2x

(

6o(x) 2 0 0
)

, (4.55)

ro(x),3 =
1

s3x

(

6 0 0 0
)

, (4.56)

where sx is the width of a knot interval along the x direction (i.e. sx = kxi+1 − kxi for all i ∈ J−3,m − 2K).

These formulas are identical for the y direction expect for sx which is replaced by sy, the width of a knot

interval along the y direction.

Actual computation.

First term of ea,b(p).

∫ kyb+1

kyb

∫ kxa+1

kxa

(
∂2f

∂x2
(x, y;p)

)2

dxdy

4.2 THE L-TANGENT NORM 111

=

∫ kyb+1

kyb

∫ kxa+1

kxa

3∑

j=0

3∑

i=0

pa+i,b+j
1

s2x
bi,2(o(x))bi(o(y))

2

dxdy

=
1

s3x

∫ kyb+1

kyb

∫ kxa+1

kxa

3∑

j=0

3∑

i=0

pa+i,b+jbi,2(o(x))bi(o(y))

2

1

sx
dxdy

=
1

s3x

∫ kyb+1

kyb

∫ o(kxa+1)

o(kxa)

3∑

j=0

3∑

i=0

pa+i,b+jbi,2(x)bi(o(y))

2

dxdy

=
1

s3x

∫ kyb+1

kyb

∫ 1

0

3∑

j=0

3∑

i=0

pa+i,b+jbi,2(x)bi(o(y))

2

dxdy

=
1

s3x

∫ kyb+1

kyb

∫ 1

0

3∑

j=0

3∑

i=0

pa+i,b+jbi,2(x)bi(o(y))

2

dx
sy
sy

dy

=
sy
s3x

∫ 1

0

∫ 1

0

3∑

j=0

3∑

i=0

pa+i,b+jbi,2(x)bi(y)

2

dxdy

=
sy
s3x

∫ 1

0

∫ 1

0

((

y3 y2 y 1
)

⊗
(

6x 2 0 0
)

Mp
)2

dxdy

=
sy
s3x

∫ 1

0

∫ 1

0

(

xT

xxMp
)2

dxdy

=
sy
s3x

∫ 1

0

∫ 1

0
pTMTxxxx

T

xxMp dxdy

=
sy
s3x

pTMT

(∫ 1

0

∫ 1

0
xxxx

T

xxdxdy

)

Mp

=
sy
s3x

pTMT

(∫ 1

0
ryr

T

y ⊗
(∫ 1

0
rx,2r

T

x,2dx

)

dy

)

Mp

=
sy
s3x

pTMT

((∫ 1

0
ryr

T

y dy

)

⊗
(∫ 1

0
rx,2r

T

x,2dx

))

Mp

=
sy
s3x

pTMT

1
7

1
6

1
5

1
4

1
6

1
5

1
4

1
3

1
5

1
4

1
3

1
2

1
4

1
3

1
2 1

⊗

12 6 0 0

6 4 0 0

0 0 0 0

0 0 0 0

Mp

=
sy
s3x

pTMTBxxMp

Second and third terms of ea,b(p). The second and the third terms of ea,b(p) are computed in a similar

way as the first term. We obtain the following formulae:

Second term:
1

sxsy
pTMTBxyMp (4.57)

Third term:
sx
s3y

pTMTByyMp (4.58)

112 Chapter 4. RANGE SURFACE FITTING

Bending energy over a single knot domain. Consequently, the exact formula for the bending energy over

the knot domain [kxa , k
x
a+1]× [kyb , k

y
b+1] is:

ea,b(p) = pTM

(
sy
s3x

Bxx +
1

sxsy
Bxx +

sx
s3y

Byy

)

Mp (4.59)

= pTBa,bp. (4.60)

Bending energy over the entire natural definition domain. Finally, the bending energy for the entire natural

definition domain is:

e(p) =
n−1∑

b=0

m−1∑

a=0

ea,b(p) (4.61)

= pT

(
n−1∑

b=0

m−1∑

a=0

Ba,b

)

p (4.62)

= pTBp (4.63)

In the bivariate case, the bending matrix B has similar properties than the bending matrix in the univariate

case. In particular, the matrix B is still sparse ; although its sparsity pattern is a bit more complicated. Indeed,

it is made of 7 diagonals of blocks each one of which being an heptadiagonal matrix. This is illustrated in

figure 4.12.

Figure 4.12: Sparsity structure of the bending matrix of bi-variate B-splines. Note that all the blocks are heptadiagonal matrices

but they are not all identical to each others. The entire bending matrix is symmetric as are the individual heptadiagonal blocks.

4.2.2 The L-Curve Criterion

The L-curve criterion is a criterion used to automatically determine a regularization parameter in an inverse

problem. It was first introduced in (Lawson and Hanson, 1974). This criterion is not as generic as the criteria

reviewed in section 3.2.2. Indeed, it is specifically designed to determine only one type of hyperparameter (a

4.2 THE L-TANGENT NORM 113

regularization parameter) in the special context of a least-squares cost function. The interested reader may find

an extensive review of the L-curve criterion in, for instance, (Hansen, 1992, 2005; Mc Carthy, 2003; Rodriguez

and Theis, 2005).

The underlying idea of the L-curve criterion is to find a compromise between underfitting and overfitting.

We remind the reader that p⋆
λ is the vector of the control points solution to the problem (4.17) for a given

regularization parameter λ. Let ρ(λ) = ‖Np⋆
λ − z‖2 be the residual norm and let η(λ) = ‖B1/2p⋆

λ‖2 be

the solution norm7. In an underfitting situation, the solution norm is expected to be small while the residual

norm is likely to be large. On the contrary, in an overfitting situation, the solution norm is probably large and

the residual norm is expected to be small. To find a compromise between these two pathological situation,

the principle of the L-curve criterion is to plot the residual norm and the solution against each other. More

precisely, it is the logarithm of the residual norm and of the solution norm that are plotted against each others.

This allows one to be invariant to the scale. The resulting curve is called the L-curve. If we note ρ̂ and η̂ the

two functions such that ρ̂(λ) = log(ρ(λ)) and η̂(λ) = log(η(λ)), then the L-curve is the set:

{
(ρ̂(λ), η̂(λ)) ∈ R2

+|λ ∈ [0, 1[
}
. (4.64)

The name L-curve comes from the usual shape of this curve. Indeed, it often resembles to the letter L. The

extremities of the L correspond to the underfitting and overfitting situations. The compromise selected with the

L-curve criterion corresponds to the corner of the L. This corner has often been selected manually by actually

plotting the L-curve. It is possible to make this approach automatic by saying that the corner of the L is the

point of the curve which as the highest curvature. Let κ be the curvature of the L-curve:

κ(λ) = 2
ρ̂′η̂′′ − ρ̂′′η̂′

(ρ̂′2 + η̂′2)3/2
, (4.65)

where the symbols ′ and ′′ denote respectively the first and the second derivatives of the functions to which it is

applied. The L-curve criterion is thus defined as:

λ∗ = arg max
λ∈[0,1[

κ(λ). (4.66)

An example of L-curve is shown in figure 4.13. Figure 4.13 also shows the typical aspect of the L-curve

criterion. In this example, the L-curve has actually the shape of the letter L. In this case, the L-curve criterion

is well defined in the sense that its maximum indeed corresponds to a good regularization parameter. However,

selecting a regularization parameter with the L-curve criterion is not always that simple. Indeed, the L-curve

is often not well defined in the sense that there are a lot of local maxima. This is a problem if we want a fully

automatic approach to choose the regularization parameter. Besides, when the values of the maxima are close

to each other, it is not always clear to decide which local maxima is the best (it is not necessarily the highest

one: it can be one of the highest). This pathological situation is illustrated in figure 4.14.

4.2.3 The L-Tangent Norm Criterion

The L-Tangent Norm (LTN) is a new criterion that we have designed to choose the regularization parameter in

range surface fitting. It was partly inspired by the idea of ‘stability’ developed in (Poggio et al., 2004). It also

relies on the L-curve.

7The word norm is a bit abusive here: ‖B1/2
p‖ is not an actual norm of p since the matrix B

1/2 is rank deficient.

114 Chapter 4. RANGE SURFACE FITTING

-10 -8 -6 -4 -2 0 2
-10

-8

-6

-4

-2

0

2

4

(Logarithm of the) residual norm

(L
og

ar
ith

m
 o

f t
he

) s
ol

ut
io

n
no

rm

Overfitting

Underfitting

Good compromise

0 0.2 0.6 0.8 1
-1

0

1

(a) (b)

Figure 4.13: (a) An example of L-curve that has the typical shape of the letter L. The extremities of the L corresponds to the

worst cases: underfitting and overfitting. (b) Curvature of the L-curve shown in (a). The highest curvature corresponds to the

regularization parameter determined with the L-curve criterion.

-4 -2 0

-5

0

5

(Logarithm of the) residual norm

(L
og

ar
ith

m
 o

f t
he

) s
ol

ut
io

n
no

rm

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

(a) (b)

Figure 4.14: An example of pathological case for the L-curve criterion.

4.2 THE L-TANGENT NORM 115

4.2.3.1 The Proposed Criterion

One thing that can easily be noticed when dealing with L-curves is that their parametrization is not uniform. In

particular, one can observe that there exists a range of values for λwhere the tangent vector norm is significantly

smaller than elsewhere. Our new criterion is based on this observation. The regularization parameter is chosen

as the one for which the L-curve tangent norm is minimal. Intuitively, such a regularization parameter is the

one for which a small variation of the regularization parameter has the lowest impact in the trade-off between

the goodness of fit and the surface smoothness.

The L-Tangent Norm (LTN) criterion can be written as:

λ∗ = argmin
]0,1[

L(λ) (4.67)

with L(λ) =
∥
∥
(
η′λ, ρ

′
λ

)∥
∥2

2
. (4.68)

ρ′λ and η′λ are the derivatives with respect to λ of the normalized residual and solution norms:

ρλ =
ρλ − ρε
ρ1−ε − ρε

, ηλ =
ηλ − η1−ε

ηε − η1−ε
(4.69)

for ε a small positive constant (10−6, for instance).

4.2.3.2 Properties of the L-Tangent Norm

A typical example of the L-tangent norm criterion is shown in figure 4.15. Even if our criterion is not convex,

it is continuous and smooth enough to make it interesting from the optimization point of view. Moreover,

neglecting the values of λ very close to 1, our criterion often has a unique minimum, which is not the case of

the L-curve criterion.

It sometimes happens that there are two minima. In such cases, it seems that these two local minima are

both meaningful. The smaller one (i.e. the global minimum) corresponds to the regularization parameter giving

the best of the two ‘explanations’ of the data. The second one seems to appear when the data contains, for

instance, a lot of small oscillations. In this case, it is not clear (even for a human being) whether the surface

must interpolate the data or approximate them, considering the oscillations as some kind of noise. This situation

is illustrated in figure 4.16.

The evaluation of the LTN criterion requires only the computation of the residual and solution norm deriva-

tives. This makes our new criterion faster to compute than, for instance, cross-validation. In particular, our

criterion allows one to improve the computation time when the surface model leads to sparse collocation and

regularization matrices (as it is the case with the B-spline model). This is not possible with the cross-validation

because the influence matrix is generally not sparse.

Another advantage of the LTN criterion is that it would still be efficient with a non-linear surface model.

While cross-validation needs a non-iterative formula to achieve acceptable computational time (which does not

necessarily exists for such surface models), our criterion just needs the computation of the residual and the

solution norms.

116 Chapter 4. RANGE SURFACE FITTING

(a) (b)

0 0.2 0.4 0.6 0.8 1
10-1

100

101

102

10z

(c) (d)

Figure 4.15: Example of the L-Tangent Norm criterion. (a) An initial surface. (b) The initial surface sampled on a set of 500

points with additive normally-distributed noise. (c) The L-Tangent Norm criterion. (d) The reconstructed surface using the

optimal regularization parameter found with the LTN.

4.2.4 Experimental Results

4.2.4.1 Data

Synthetic data. The first type of data we have used in these experiments are generated by taking sample

points (with added noise) of surfaces defined by:

g(x, y) =
8∑

i=1

2(1− d)c1
5

g1(x, y) +
dc2
5
g2(x, y) (4.70)

g1(x, y) = exp

(

−20
(
a1(x− a2)2 + a3(y − a4)2

)

a5

)

(4.71)

g2(x, y) = sin 4π
(

b1(x+ 2b2)
1
2
+b3 + b4(y + 2b5)

1
2
+b6
)

(4.72)

where a1, . . . , a5, b1, . . . , b6, c1, c2 are randomly chosen in [0, 1] and where d is randomly chosen in {0, 1}.
Examples of generated surfaces are given in figure 4.17.

Real data. The second type of data we have used in these experiments are real depth maps obtained by stereo

imaging means. Figure 4.18 shows the data. The range images we have used in these experiments are large:

their size is approximately 400×600 pixels. Therefore, with the approach presented in this section, it is difficult

(even impossible) to reconstruct a surface from the original datasets. This is the reason why the range images

have been subsampled over a regular grid of size 30 × 45. However, the full resolution image is used when

comparing a reconstructed surface to the initial dataset.

4.2 THE L-TANGENT NORM 117

0 0.2 0.4 0.6 0.8 1
10-1

100

101

102

10z

104

(a) (b)

(c) (d)

Figure 4.16: An example of the LTN criterion presenting two meaningful minima. (a) An initial surface containing a lot of

small oscillations. (b) The L-tangent norm criterion presents two minima (excluding the one reached for λ close to 1). (c) The

reconstructed surface using the first minimum (λ∗
1 = 0.0189). (d) The reconstructed surface using the second minimum

(λ∗
2 = 0.8073).

4.2.4.2 Computation Timings

Single point evaluation. We intend to compare the computation time of the evaluation for a single value of

the regularization parameter of the cross-validation score and the L-tangent norm. To do so, we take a surface

and we sample it for several numbers of points. The timings reported in figure 4.19 have been obtained with

the cputime function of Matlab and for the (arbitrary) regularization parameter λ = 1
2 . Note that the timing for

each distinct number of points has been repeated multiple times in order to get stable results. Not surprisingly,

figure 4.19 tells us that the evaluation for a single point with the L-tangent norm is far much faster than with

cross-validation. This comes from the fact that the inversion of a matrix is needed in the computation of the

cross-validation score while only multiplications between sparse matrices and vectors are involved in the L-

tangent norm computation.

Optimization of the criterion. In this experiment, we are interested in the computation time of the whole

optimization process for both the L-tangent norm and cross-validation. We have taken 300 examples of ran-

domly generated surfaces known through a noisy sampling. The cross-validation optimization process is per-

formed using a golden section search (implemented in the fminbnd function of Matlab). The results are shown

in figure 4.20. As in the previous experiment, the optimization of the L-tangent norm is faster than for cross-

validation.

Reconstruction of whole surfaces. Figure 4.21 shows the computation times needed to the whole surface

reconstruction problem with the three range images presented in figure 4.18. Timings for both the L-tangent

norm criterion and the cross-validation score are given in figure 4.21. As expected, using the L-tangent norm

is faster than using cross-validation.

118 Chapter 4. RANGE SURFACE FITTING

(a) (b) (c)

(d) (e) (f)

Figure 4.17: Examples of randomly generated surfaces for the experiments.

(a) (b) (c)

(d) (e) (f)

Figure 4.18: Real range data used in the experiments of this section (Courtesy of Toby Collins). Top row: data represented as

a textured 3D surface. Bottom row: same data as in the top row but represented with depth maps.

4.2 THE L-TANGENT NORM 119

200

0

2

4

6

8

10

Number of points

Cross Validat on

L-Tangent Norm

400 600 800 1000

i

Co
m

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

0

20

40

60

80

200

Number of points
400 600 800 1000Ra

tio
 o

f t
he

 c
ro

ss
-v

al
id

at
io

n
tim

e
by

 th
e

L-
ta

ng
en

t n
or

m
 o

ne

(a) (b)

Figure 4.19: Comparison of the cross-validation versus the L-tangent norm computation time for the evaluation of the criteria

at a single value. (a) Plot for both cross-validation and the L-Tangent Norm criteria. (b) Ratio of the timings (cross-validation

timings divided by the L-Tangent Norm timings).

0

5

10

15

20

example

Cross-validat on
L-tangent norm

0 100 200 300

i

Co
m

pu
ta

tio
n

tim
es

(s
ec

on
ds

)

Figure 4.20: Computation time needed to optimize the L-tangent norm and the cross-validation.

0

100

200

300

400

range image

L-tangent norm Cross-validat on

1 2 3

i

Co
m

pu
ta

tio
n

tim
es

 (s
ec

on
ds

)

Figure 4.21: Computation time needed to reconstruct the whole surfaces from the range data of figure 4.18 using the L-tangent

norm and cross-validation.

120 Chapter 4. RANGE SURFACE FITTING

4.2.4.3 Is the L-Tangent Norm an Approximation of Cross-Validation?

This experiment aims at comparing the regularization parameter obtained with our L-tangent norm and with

the cross-validation criterion. To do so, we have taken noisy samples of randomly generated surfaces. Then,

the regularization parameters obtained with cross-validation (the λ⋆c) for each dataset are plotted versus the

regularization parameter determined with the L-tangent norm (the λ⋆l). The results are reported in figure 4.22.

We see from figure 4.22 that the regularization parameters obtained with the L-tangent norm are often close

to the ones obtained with cross-validation. One can observe that the L-tangent norm tends to slightly under-

estimate large regularization parameters. However, large regularization parameters are usually obtained for

datasets with a lot of noise or badly constrained. In such cases, the accuracy of the regularization parameter

does not matter so much.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) (b)

Figure 4.22: Comparison of the regularization parameters obtained with the L-tangent norm (λ⋆
l) and with the ones obtained

with cross-validation (λ⋆
c). (a) Data with normally-distributed noise. (b) Data with uniformly-distributed noise.

4.2.4.4 Reconstructed Surfaces

Synthetic data. In this experiment, we compare the surfaces reconstructed from data obtained as noisy dis-

cretizations of randomly generated surfaces. Let us denote f the original randomly generated surface, fc, fl

and fn the surfaces reconstructed using respectively cross-validation, the L-curve criterion and our L-tangent

norm. The difference between the original surface and the reconstructed ones is measured with the Integral

Relative Error (IRE). If the functions f , fc, fl and fn are all defined over the domain Ω, then the IRE is given

by:

e(f, g) =

∫∫

Ω |g(x, y)− f(x, y)| dxdy∣
∣
∣ max
(x,y)∈Ω

f(x, y)− min
(x,y)∈Ω

f(x, y)
∣
∣
∣

, (4.73)

where the function g is either fc, fl or fn. The results of this experiment are reported in figure 4.23. This

figure tells us that the reconstruction errors are small and similar for cross-validation and the L-tangent norm.

The IRE for surfaces reconstructed using the L-curve criterion are much larger than with the two other criteria.

Moreover, only IREs lower than 1 are reported for the L-curve criterion: the IRE was greater than 1 for 48 test

surfaces. These large IREs are mainly due to a failure in the maximization of the L-curve criterion.

Range images. In this last experiment, we intend to compare the surfaces reconstructed from real range

images. To do so, we take again the three range images of figure 4.18. Let fi be the original range image

(before subsampling). Let fl and fc be the reconstructed surfaces using respectively the L-tangent norm and the

cross-validation criterion to choose the regularization parameter. The results of this experiment are presented

4.2 THE L-TANGENT NORM 121

0

0.4

0.8

surfaces
1 40 80 120 160 200

Cross Validat on

L-Curve

L-Tangent Norm

i

In
te

gr
al

 re
la

tiv
e

er
ro

r
Figure 4.23: Integral relative errors for 200 randomly generated surfaces sampled over 500 points with additive normally-

distributed noise.

in the form of Relative Error Maps (REM). The REM for the surface reconstructed using the L-tangent norm is

a picture such that each pixels (x, y) is associated to a colour Cl(x, y) proportional to the difference of depth

between the reconstructed surface and the original one. This is written as:

Cl(x, y) =
|fi(x, y)− fl(x, y)|

∣
∣
∣max
(u,v)

fi(u, v)−min
(u,v)

fi(u, v)
∣
∣
∣

. (4.74)

The REM for the surface reconstructed using cross-validation, Cc, is defined similarly to equation (4.74)) except

that fl is replaced by fc. We also define the Difference Error Map (DEM) by Cl,c(x, y) = |Cc(x, y)− Cl(x, y)|.
The results of the comparison between surfaces reconstructed from range images using the L-tangent norm and

the cross-validation are reported in figure 4.24. On this figure, only the error map for the L-tangent norm is

reported. Indeed, as it is shown in figure 4.24 (d-f), the two reconstructed surfaces are very similar (which is

the point of main interest in this experiment). Even if the reconstruction errors are not negligible (figure 4.24

(a-c)), they are still small. The main reason for these errors is the subsampling of the initial datasets.

(a) (b) (c)

(d) (e) (f)

Figure 4.24: (a-c) Relative error maps (REM) for the surfaces reconstructed using the L-tangent norm criterion for the three

range images of figure 4.18. (d-f) Difference error maps (DEM) between the surfaces reconstructed using the L-tangent norm

criterion and the cross-validation criterion.

122 Chapter 4. RANGE SURFACE FITTING

4.3 Range Surface Fitting with Heteroskedastic Noise

In this section, we present some other contributions we made in the topic of reconstructing range surface.

In the previous sections, we considered arbitrary range data in the sense that the locations of the data points

did not follow any particular pattern. In this section, we consider data sets with points arranged on a regular

grid. More precisely, we consider data sets in form of depth maps produced by TOF cameras. This type of

data is particularly challenging for several reasons. Firstly, there is an important amount of data. With the

equipment we used, there was typically around 20 thousands points per depth map. Secondly, there is usually

an important amount of noise in the TOF data. Besides, this noise is heteroskedastic which means that the

variance of the noise is not identical for all the pixels of the depth map. Thirdly, as TOF cameras can capture

data from arbitrary parts of the environment, the resulting depth maps are likely to contain discontinuities. The

contributions proposed in this section aim at coping with these different aspects of TOF data.

This section is organized as follows. First, we specialize the general approach to range surface fitting with

B-splines to the particular case of data arranged on a regular grid. In this first part, we will just consider an

homoskedastic noise. In addition to the presentation of the general way of handling grid data, we make two

contributions: a new regularization term that approximate the bending energy while being compatible with

the grid approach and a new manner of selecting the regularization parameter. Next, we present our multi-

step approach for handling heteroskedastic noise and discontinuities. Finally, the efficiency of our approach is

illustrated with a set of experiments.

4.3.1 Fitting a B-spline on Mesh Data

4.3.1.1 Properties of the Kronecker Product

As it will be shown later, fitting a B-spline on mesh data leads to formulas that heavily relies on the Kronecker

product. We thus give here a list of interesting properties linked to the Kronecker product. The following

identities are taken from (Dierckx, 1993):

Ip ⊗ Iq = Ipq (4.75)

(A⊗ B)T = AT ⊗ BT (4.76)

(A⊗ B)−1 = A−1 ⊗ B−1 (4.77)

(AB)⊗ (CD) = (A⊗ C)(B⊗ D) (4.78)

(A+ B)⊗ (C+ D) = A⊗ C+ B⊗ C+ A⊗ D+ B⊗ D (4.79)

vect(Ap×sXs×t) = (It ⊗ A)vect(X) (4.80)

vect(Xs×tBt×q) = (BT ⊗ Is)vect(X) (4.81)

vect(Ap×sXs×tBt×q) = (BT ⊗ A)vect(X) (4.82)

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 123

Here comes additional properties that will be useful in the derivations of the principles for fitting a B-spline to

mesh data:

vect(Am×n) = vect(Bm×n)⇔ Am×n = Bm×n (4.83)

trace(Am ⊗ Bn) = trace(Am)trace(Bn) (4.84)

vect(A)− vect(B) = vect(A− B) (4.85)

‖vect(A)‖2 = ‖A‖2F (4.86)

‖A‖2F = trace(ATA) (4.87)

trace(In − An×n) = n− trace(A) (4.88)

4.3.1.2 Mesh Data

In this section, we consider that the data set is made of range data points organized as a regular grid of size

m × n. This type of data naturally arises with TOF cameras since this device produces depth maps. This

particular data structure leads to write the whole data set in the following way:

{qi,j = (xi, yj)↔ zi,j | i ∈ J1,mK, j ∈ J1, nK} . (4.89)

The depths zi,j are grouped in a matrix Z ∈ Rm×n.

4.3.1.3 Fitting a B-spline to Mesh Data

The general principle for fitting a B-spline to mesh range data is the same as the one used in the previous

sections. It is still formulated as a minimization problem with a cost function composed of two terms. However,

for the needs of this section, this optimization problem is formulated in a slightly different way:

min
P

D(P) +Rλ(P), (4.90)

where D andRλ are respectively the data term and the regularization term. Here, we consider that the regular-

ization parameter λ is part of the regularization term itself.

Data term. The data term is again defined as the mean squared residual:

D(P) = 1

mn
‖Nvect(P)− vect(Z)‖2 . (4.91)

The fact that the data are arranged on a grid is exploited in the collocation matrix N. Indeed, since we use

uniform cubic B-splines, this matrix is initially defined as:

N =

N
−3(x1)N−3(y1) . . . N

−3(x1)Nh−1(y1) Ng−1(x1)N−3(y1) . . . Ng−1(x1)N3(y1)

.

.

.

.

.

.

.

.

.

.

.

.

N
−3(x1)N−3(yn) . . . N

−3(x1)Nh−1(yn) Ng−1(x1)N−3(yn) . . . Ng−1(x1)N3(yn)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

N
−3(xm)N

−3(y1) . . . N
−3(xm)Nh−1(y1) Ng−1(xm)N

−3(y1) . . . Ng−1(xm)N3(y1)

.

.

.

.

.

.

.

.

.

.

.

.

N
−3(xm)N

−3(yn) . . . N
−3(xm)Nh−1(yn) Ng−1(xm)N

−3(yn) . . . Ng−1(xm)N3(yn)

. (4.92)

124 Chapter 4. RANGE SURFACE FITTING

From equation (4.92), it is easy to see that the collocation matrix N can be written as the Kronecker product of

two matrices:

N = E⊗ F, (4.93)

where:

E =

N−3(x1) . . . Ng−1(x1)
...

...

N−3(xm) . . . Ng−1(xm)

, (4.94)

and

F =

N−3(y1) . . . Nh−1(y1)
...

...

N−3(yn) . . . Nh−1(yn)

. (4.95)

Consequently, the data term can be written as:

D(P) = ‖(E⊗ F)vect(P)− vect(Z)‖2 (4.96)

Regularization term. In order to obtain the best efficiency in terms of computational complexity, we propose

a new regularization term. It is a variation of the classical bending energy used so far. We propose a new

regularization term because the classical bending energy cannot be expressed with a tensor product expression.

We define it as:

Rλ(P) = λ

∫ kyh

ky0

∫ kxg

kx0

(
∂2f

∂x2
(x, y;P)

)2

dxdy

+ λ

∫ kyh

ky0

∫ kxg

kx0

(
∂2f

∂y2
(x, y;P)

)2

dxdy

+ λ2
∫ kyh

ky0

∫ kxg

kx0

(
∂4f

∂x2∂y2
(x, y;P)

)2

dxdy. (4.97)

The main advantage of the regularization term of equation (4.97) is that, as the data term, it can be written using

the Kronecker product. Indeed, we have that:

Rλ(P) = ‖Rλvect(P)‖2 with Rλ =

λ(Sx ⊗ F)

λ(E⊗ Sy)

λ2(Sx ⊗ Sy)

 , (4.98)

where Sx and Sy are the square roots of the monodimensional bending matrices along the x and y directions

respectively.

Solution to the problem. The main advantage of having a data term and a regularization term that can be

written using the Kronecker product of matrices is that it leads to efficient computations. Indeed, given the

expressions of the data term and the regularization term, the solution of problem (4.90) is given by:

P⋆ =
(

FTF+ λBy

)−1
FTZE

(

ETE+ λBx

)−1
, (4.99)

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 125

where Bx = STxSx and By = STy Sy. The solution given by equation (4.99) is derived with the following

reasoning:

min
P

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

E⊗ F

λ(Sx ⊗ F)

λ(E⊗ Sy)

λ2(Sx ⊗ Sy)

vect(P)−

vect(Z)

0

0

0

∥
∥
∥
∥
∥
∥
∥
∥
∥
∥

2

⇔

E⊗ F√
λSx ⊗ F√
λE⊗ Sy

λSx ⊗ Sy

T

E⊗ F√
λSx ⊗ F√
λE⊗ Sy

λSx ⊗ Sy

vect(P) =

E⊗ F√
λSx ⊗ F√
λE⊗ Sy

λSx ⊗ Sy

T

vect(Z)

0

0

0

⇔
{
(ET ⊗ FT)(E⊗ F) + λ(STx ⊗ FT)(Sx ⊗ F) + λ(ET ⊗ STy)(E⊗ Sy)

+ λ2(STx ⊗ STy)(Sx ⊗ Sy)
}
vect(P) = (ET ⊗ FT)vect(Z)

⇔ (ETE⊗ FTF)vect(P) + λ(STxSx ⊗ FTF)vect(P) + λ(ETE⊗ STy Sy)vect(P)

+ λ2(STxSx ⊗ STy Sy)vect(P) = (ET ⊗ FT)vect(P)

⇔ FTFPETE+ λFTFPSTxSx + λSTy SyPE
TE+ λ2STy SyPS

T

xSx = FTZE

⇔
(

FTFP+ λByP

)(

ET + E+ λBx

)

= FTZE

⇔
(

FTF+ λBy

)

P

(

ETE+ λBx

)

= FTZE

⇔ P =
(

FTF+ λBy

)−1
FTZE

(

ETE+ λBx

)−1

4.3.1.4 Choice of the Regularization Parameter

At this point, we have an efficient approach to fit a surface to range data (with homoskedastic noise) for a given

regularization parameter. In this section, we propose a new approach to determine in an automatic and fast

manner the regularization parameter. The contribution we propose here is not completely brand new. In fact, it

is an adaptation to our problem of a quite old principle: Morozov’s discrepancy principle (Morozov, 1966). In

this section, we explain the principles of this criterion in the context of range surface fitting. Extended details

on the Morozov’s principle may be found in (George and Nair, 1994; Pereverzev and Schock, 1999; Schock,

1984; Shiguemori et al., 2004; Tautenhahn and Hämarik, 1999).

Again, we emphasize that for now, we just consider a noise with the same distribution over all the dataset.

This stems from the fact that fitting a surface to range data with homoskedastic noise is the basic building block

of the whole algorithm that we propose in this section. The case of the heteroskedastic noise will be handle in

section 4.3.2. Let us consider that the dataset is a noisy sample of a reference function f , i.e. zi,j = f(j, i)+ei,j

where the ei,j are random variables that represent the noise. Let us further assume that the noise has standard

deviation σ. For a given dataset Z, let S be the set of all the B-splines control points satisfying equation (4.99)

for all possible regularization parameter λ, i.e. :

S = {f(•;Pλ) | λ ∈ R+}. (4.100)

126 Chapter 4. RANGE SURFACE FITTING

The surface fitting problem is equivalent to find the function f ∈ S such that:

f = argmin
s∈S
‖s− f‖, (4.101)

where ‖•‖ is some kind of function norm. The discrepancy principle states that the function f should be the one

that results in a standard deviation for the errors (std(S − Z) with si,j = f(j, i)) that is as close as possible to

the true one (σ). Since f is not necessarily a member of S , the strict equality between σ and std(S− Z) is not

always possible. The regularization parameter is thus chosen as the one that minimizes the following problem:

min
λ∈R+

(std(S⋆(λ)− Z))2 , (4.102)

with si,j(λ) = sλ(j, i) and sλ is the B-spline obtained by solving equation (4.99) for a given value of λ.

Since the quantity std(S⋆−Z) increases with λ, the criterion optimized in equation (4.102) has only one global

minimum. Problem (4.102) may be optimized using, for instance, the golden section search algorithm described

in section 2.2.2.12.

Of course, the ground truth standard deviation of the errors is generally unknown in practice. In place of

that, we propose a simple but efficient approach to estimate the standard deviation of the noise directly from

the dataset. It relies on a local linear approximation of the data. Let Pi,j be the function representing the plane

obtained by linear regression from the dataset {(v, u)↔ zu,v | u ∈ Ji− 1, i+ 1K and v ∈ Jj − 1, j + 1K}. The

approximate standard deviation σe for all the dataset Z is given by:

σ2e =
1

(m− 2)(n− 2)

m−1∑

i=2

n−1∑

j=2

(Pi,j(j, i)− zi,j)2. (4.103)

The efficiency of this standard deviation estimator for range data will be tested in the experimental part of this

section (see section 4.3.3.1). Note that this estimator is clearly more efficient with data that represent a smooth

surface than with data that have discontinuities.

4.3.1.5 The FGA Algorithm

The combination of equation (4.99) and of the discrepancy principle (including the standard deviation estima-

tor) is called the Fast Grid Approach algorithm (FGA). Note that this algorithm is designed to work on datasets

with homoskedastic noise. It will be used as a basic building block of our more general approach to handle

heteroskedastic data.

4.3.2 Our Approach to Handle Heteroskedastic Noise and Discontinuities

In section 4.3.1, we presented the FGA method which allows one to quickly fit a B-spline to range data organized

as a regular mesh with homoskedastic noise. In this section, we present our approach to fit a B-spline on range

data with heteroskedastic noise and discontinuities. The approach we propose to handle such data is a multi-step

approach. The different steps of the algorithm are summarized below and detailed after that.

Segmentation. The dataset is segmented in order to first, separate the different level of noise and second, get

rid of the discontinuities.

Bounding boxes. The data of each segment is embedded in a rectangular domain (the bounding box) so that

the FGA algorithm can be used.

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 127

Local depth maps. A local depth map is created for each segment by filling the corresponding bounding box.

Local fittings. A surface is fitted to each one of the local depth maps using the FGA algorithm.

Merging. A single global surface is finally constructed from the local fittings using the fact that the control

points of a B-spline have only a localized influence.

Figure 4.25 illustrates the steps of our approach.

1 40 80 120 160

1

40

80

120
1

2

3

4

5

6

7

1 40 80 120 160

1

40

80

120

(a) (b) (c)

1 40 80 120 160

1

40

80

120

1

2

3

4

5

6

7

(d) (e) (f)

1 40 80 120 160

1

40

80

120
1

2

3

4

5

6

7

(g)

Figure 4.25: Illustration of our multistep algorithm to fit a B-spline to range data with discontinuities and heteroskedastic noise.

(a) The scene viewed with an usual sensor (CMOS sensor). (b) Depth map acquired with a TOF camera (PMDTec 19k). (c)

Depth map segmentation. (d) Bounding box for the segment C(14)
. (e) Local depth map obtained by extrapolating the data

from C(14)
. (f) Local fitting. (g) Depth map sampled from the global surface obtained by merging all the local fittings. Compared

to the initial depth map (b), the amount of noise has been reduced while preserving the edges of the objects.

4.3.2.1 Segmentation

The first step of our approach consists in segmenting the initial dataset according to the depth of the points.

Using this criterion is motivated by the fact that the amount of noise depends mainly on the distance between

the sensor and the scene. Besides, this approach makes the discontinuities coincident with the borders of

the segments which is a desirable behaviour in the sense that it is easier to fit a surface on a dataset without

discontinuities.

The segmentation is achieved with the α-expansion algorithm of (Boykov et al., 2001; Zabih and Kol-

mogorov, 2004). The implementation details are given below. The result of the segmentation step is a set

of r labels E = J1, rK and a collection of r segments C(t) for t ∈ J1, rK. The segment C(t) is the set of pix-

els (i, j) ∈ J1,mK × J1, nK labelled with the value t. Note that each segment is guaranteed to be 8-connected.

We denote C(t) the matrix such that c
(t)
i,j = 1 if (i, j) ∈ C(t) and 0 otherwise.

128 Chapter 4. RANGE SURFACE FITTING

Segmentation details. Let J = J1,mK × J1, nK be the set of pixels of the depth map Z. The segmen-

tation consists in classifying each pixel of J in one of the r segments {C(t)}t∈J1,rK. Besides, we want the

segmentation to be spatially consistent and the segments to be sets of 8-connected pixels. To do so, we use the

α-expansion algorithm proposed in Boykov et al. (2001); Zabih and Kolmogorov (2004). With this approach,

the segmentation is the solution of an optimization problem:

min
{C(1),...,C(s)}

Edata + Ereg, (4.104)

where s is an integer such that s ≤ r. Edata is the data term, i.e. a term that measures the quality of allocating

a certain label to certain pixels. Ereg is a term promoting the spatial consistency of the segmentation.

We chose as data term the likelihood that a depth zi,j belongs to the segment C(t). If we consider a normal

distribution of parameters θ(t) = (µ(t), σ(t)) for the noise in the tth segment, Edata is given by:

Edata =
∑

t∈J1,sK

∑

(i,j)∈J
D(t)(i, j), (4.105)

with D(t)(i, j) = − log
(
L((i, j) ∈ C(t)|θ(t)))

)
, (4.106)

and L((i, j) ∈ C(t)|θ(t)) ∝ exp
(

− (zi,j−µ(t))2

2(σ(t))2

)

. (4.107)

The parameters {θ(t)}t∈J1,sK are computed using the k-means algorithm on the depth map Z. The number s

is determined manually. The regularization term Ereg is defined using the Potts model (N (p) denotes the

8-neighbourhood of the pixel p):

Ereg =
∑

p∈J

∑

q∈N (p)

V (p,q), (4.108)

with V (p,q) =

0 if p ∈ C(t) and q ∈ C(t)
c if p ∈ C(t) and q ∈ C(t′), t 6= t′.

The scalar c ∈ R+ determines the weight given to the spatial consistency: we use c = 25. The final touch of

the segmentation consists in taking the r connected components of the s segments {C(t)}t∈J1,sK.

4.3.2.2 Bounding Boxes

Usually, the data contained in the segments
{
C(t)
}r

t=1
does not form a complete rectangle. However, the

data must be arranged in a full grid so that the FGA algorithm can be used. To do so, we define for each

segment C(t) a bounding boxB(t) which is, intuitively, a rectangular subdomain of [kx−k, k
x
g+k+1]×[k

y
−l, k

y
h+l+1]

that includes the data contained in C(t) and of minimal size. In other words, B(t) is the smallest rectangular

domain Jβ(t), δ(t)K × Jγ(t), η(t)K (with β(t), δ(t) ∈ M and γ(t), η(t) ∈ N) that contains the non-rectangular

domain I(t) defined as follow:

I(t) =
⋃

(i,j) s.t.
(u,v)∈infl(pi,j)
for (u,v)∈C(t)

infl(pi,j) for t ∈ J1, rK, (4.109)

where infl(pi,j) is the domain of influence of the weight pi,j , i.e. :

infl(pi,j) = [kxj , k
x
j+k+1]× [kyi , k

y
i+l+1]. (4.110)

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 129

4.3.2.3 Local Depth Maps

Except for some exceptional cases, the data contained in the segment C(t) does not fill completely the bounding

box B(t). Having a dataset organized as a complete grid is however a requirement to use the FGA algorithm.

We thus define for each segment C(t) a local depth map, denoted Z(t), which is a rectangular completion of the

data contained in C(t). For all t ∈ J1, rK, the local depth map Z(t) ⊂ Rm×n is defined as:

z
(t)
i,j =

zi,j if (i, j) ∈ C(t)

0 if (i, j) /∈ B(t)

ẑ
(t)
i,j otherwise.

(4.111)

The values ẑ
(t)
i,j are computed by recursively propagating the depths located on the borders of the class C(t). The

details of this operation are given by algorithm 6. Note that the local depth maps Z(t) all have the same size

than the initial depth map Z but they are non-zero only over B(t). This makes the merging step easier.

Algorithm 6: Computation of the local depth map Ẑ(t)

input : B(t), Z, C(t)

output: Ẑ(t)

data : S =
[
1 1 1
1 1 1
1 1 1

]

1 begin

2 A← C(t)

3 T← (A⊕ S)r A

4 T ← {(i, j) ∈ B(t) | Ti,j = 1}
5 while T 6= ∅ do

6 for (i, j) ∈ T do

7 V ← {(u, v)
∣
∣ |u− i| ≤ 1 et |v − j| ≤ 1}

8 z ← 0
9 n← 0

10 for (u, v) ∈ V ∩ C(t) do

11 z ← z + zu,v
12 n← n+ 1

13 ẑ
(t)
i,j ← z/n

14 A← A+ T

15 T← (A⊕ S)r A

16 T ← {(i, j) ∈ B(t)|ti,j = 1}

4.3.2.4 Local Fittings

The fourth step of our approach consists in fitting a surface to each one of the r depth maps Z(t). This is

achieved using the FGA algorithm of section 4.3.1. The use of the FGA algorithm is possible because all the

requirements are fulfilled: the local depth maps are complete rectangular grids and, moreover, the noise is

homogeneous inside each one of the segments. We use the following parameters for the FGA algorithm:

M̄ (t) =M ∩ [β(t), δ(t)], Ā(t) = A ∩ [β(t), δ(t)],

L̄(t) = L ∩ [γ(t), η(t)], B̄(t) = B ∩ [γ(t), η(t)].

130 Chapter 4. RANGE SURFACE FITTING

The result of this step is a collection of r matrices of control points P(t) ∈ R(g+k+1)×(h+l+1). Note that p
(t)
i,j = 0

if there is no pixel (u, v) ∈ B(t) such that (u, v) ∈ infl(pi,j). The regularization parameter for the tth depth

map, denoted α(t), is computed using the data contained in C(t) only, not all the data from Z(t).

4.3.2.5 Merging

The last step of our approach consists in merging all the local fittings in order to get a surface that fits the whole

depth map Z. To do so, we build a B-spline by taking the control points computed during the previous step.

For t ∈ J1, rK, let Q(t) ∈ R(g+k+1)×(h+l+1) be the matrix that indicates the control points of ‘interest’ for the

segment C(t), i.e. the ones that have an influence region intersecting with the data contained in C(t):

q
(t)
i,j =

1 if ∃(u, v) ∈ C(t) s.t. (u, v) ∈ infl(pi,j)

0 otherwise.

The set of interesting control points is then reduced so that there are no conflicts between the control points

coming from different local fittings. This is achieved by eroding the binary matrix Q(t):

Q̂(t) = Q(t) ⊖ S2, (4.112)

where S2 is the following structuring element:

S2 =

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

1 1 1 1 0

0 0 0 0 0

. (4.113)

Finally, the surface that fits the whole depth map Z is the B-spline having for control points the matrix P⋆:

P⋆ =
r∑

t=1

P̄(t), (4.114)

with p̄
(t)
i,j =

p
(t)
i,j if q̂

(t)
i,j = 1

0 otherwise.
(4.115)

4.3.3 Experiments

4.3.3.1 Standard Deviation Estimator

In this experiment, we assess the precision of the standard deviation estimator described in section 4.3.1.4.

To do so, we randomly generate some surfaces as linear combination of elementary functions (sine waves,

exponential, polynomials). Depth maps are then obtained by sampling these surfaces on a grid of size 120×160.

An additive normally-distributed noise with standard deviation σ is added to the depth maps. The estimated

standard deviation σe is finally compared to the expected value σ by computing the relative error between them.

The estimator is tested for several levels of noise ranging from 1% to 21% of the maximal data amplitude. The

estimation is repeated for 100 surfaces for each level of noise. We obtain a relative error that is consistently

smaller than 6%.

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 131

4.3.3.2 Grid Approach

This experiment shows the interest of exploiting the tensorial properties of the B-spline model instead of the

direct approach in order to fit a surface on data arranged as an orthogonal grid. Figure 4.26 shows the com-

putation times required by the two approaches in function of the number of data points (with slightly less data

points than control points). It is obvious from this illustration that the grid approach is much faster than the

direct approach. We can even say that the grid approach is compulsory if we want to fit surfaces in a reasonable

amount of time for large datasets. Moreover, the memory space required by the direct approach is much more

important than for the grid approach. On our test machine, the computations were intractable for the standard

approach with more than 1500 data points.

255 455 655 855 1555 1255
5

55

155

155

255

255

355

355

455

455

Number of data points

C
om

pu
ta

tio
n

tim
e

(s
ec

on
ds

)

Standard approach
Grid approach

Figure 4.26: Illustration of the performance gain obtained when using a grid approach instead of the standard one to fit surfaces

on range data.

4.3.3.3 Qualitative Results

Figure 4.27 shows some representative results of our surface fitting algorithm. These results are compared to

the ones obtained with a global regularization scheme. Since the discrepancy principle is only usable on data

with homogeneous noise, we used the generalized cross validation principle (Wahba, 1990) to compute the

regularization parameter with the global regularization scheme. It is clear from figure 4.27 that our approach is

able to simultaneously use the proper amount of regularization while preserving the sharp edges present in the

observed scene. On the contrary, a global regularization scheme leads to an overly smoothed surface that does

not reflect well the scene geometry.

4.3.3.4 Quantitative Results

In this experiment, we compare the quality of the surfaces fitted using our algorithm described in section 4.3.2

with the ones obtained using a global regularization scheme. This is achieved by comparing the fitted surface

with a ground truth surface. To do so, we used a set of 214 range images publicly available at (CESAR

laboratory (Oak Ridge National Laboratory)). These images were acquired using an Odetics LADAR camera

and, as a consequence, the amount of noise is quite limited. These datasets can thus be used as ground truth

surfaces. Let Z̄ be a range image acquired with the LADAR camera. The different algorithms are tested using

datasets obtained by adding a normally-distributed noise to the LADAR range images with a standard deviation

proportional to the depth. Let Z be the noisy dataset:

zi,j = z̄i,j + ei,j , (4.116)

132 Chapter 4. RANGE SURFACE FITTING

Figure 4.27: First row: a view of the scene taken with a CMOS sensor. Second row: raw depth maps. Notice the high level

of noise present in the background. Third row: surface fitted using our algorithm. Last row: surface fitted using a global

approach. With this approach, we can see that the object boundaries are over-smoothed compared to the results obtained with

our algorithm.

4.3 RANGE SURFACE FITTING WITH HETEROSKEDASTIC NOISE 133

where ei,j is a random variable drawn from a normal distribution N (0, σi,j) with σi,j ∝ zi,j . Let fo and fg

be the surfaces fitted to the range image Z with our algorithm and a global regularization scheme respectively.

Let Ẑo and Ẑg be the depth maps predicted with fo and fg respectively. The quality of the fitted surface is

assessed by comparing the norm between the predicted depth maps Ẑo and Ẑg with the ground truth one Z.

The results, averaged for the 214 range images of the dataset, are reported in figure 4.28 for different levels of

noise. It shows that our approach is, in average, 20% better than the one using a global regularization scheme

whatever the noise intensity is.

�% 15% 10%
5

05

155

105

255

205

355

305

455

405

Noise intensity

(O
ur

 a
pp

ro
ac

h)
(G

lo
ba

l r
eg

ul
. s

ch
em

e)

D
is

cr
ep

an
cy

 b
et

w
ee

n
th

e
gr

ou
nd

 tr
ut

h
su

rfa
ce

an
d

th
e

fit
te

d
on

es

Our approach
Global regularization scheme

Figure 4.28: Discrepancy between ground truth range images and the ones predicted with the fitted surface using our algorithm

(dark grey) and a global regularization scheme (light grey). The indicated level of noise corresponds to the standard deviation

of a normally-distributed noise for the deepest point and relative to the total depth of the scene. The surfaces fitted with our

approach are better than the ones fitted using a global regularization scheme.

134 Chapter 4. RANGE SURFACE FITTING

135

Chapter 5
Image Registration

Image registration is one of the most fundamental

problems in computer vision. It consists in finding the

transformation that aligns two or more images. Many

techniques have been proposed to solve this problem.

We start this chapter by reviewing the state-of-the-art ap-

proaches to image registration. In particular, the two fun-

damental approaches for parametric image registration,

i.e. the feature-based and the direct approaches, will be

introduced. Then, we will present two of our contributions

related to image registration. The first one is a method that

allows one to use a direct approach to image registration

without needing a region of interest. This first contribu-

tion uses a robust framework for direct image registration

based on M-estimators. It has been published in (Brunet

et al., 2009c, 2010c,d). The second one is a new method

to automatically tune the hyperparameters that naturally

arise when using a feature-based approach to register im-

ages. The novelty of this approach lies in the fact that it

uses the pixel information in addition to the features. It has

been published in (Brunet et al., 2010a,b).

Note chapter 6 will also deal with image registration.

The main difference of this next chapter is that it will be

about defining a parametric image deformation model in-

stead of the parameter and hyperparameter estimation as

the current chapter.

136 Chapter 5. IMAGE REGISTRATION

5.1 General Points on Image Registration

5.1.1 Background

The problem of registering two or more images is to determined a transformation that aligns the input images

(Irani and Anandan, 1999; Torr and Zisserman, 1999). Note that in thesis, we will mainly consider the case

with only two images. Image registration is a problem that impacts numerous fields such as, to cite a few,

computer vision (Bartoli, 2008c,c; Bartoli and Zisserman, 2004; Szeliski, 2006; Zitová and Flusser, 2003),

medical imaging (Aouadi and Sarry, 2008; Groher et al., 2010; Hahn et al., 2010, 2006; Modersitzki, 2004;

Zikic et al., 2010a,b), or metrology (Corpetti et al., 2002; Gendrich and Koochesfahani, 1996; Heitz et al.,

2008; Papadakis and Mémin, 2008).

Broadly speaking, two types of transformation may be estimated (Gay-Bellile, 2008):

A geometric transformation that modifies the position of the pixels in the pictures. This transformation re-

sults in a dense deformation field between a reference image and a target image. Our contributions related

to image registration mainly deal with this kind of transformations, especially with non-rigid ones.

A photometric transformation that modifies the colour of the pixels. This transformation models the illu-

mination changes. This type of transformation is not always used when registering two images. This

is especially the case when the images are registered using features which are invariant to illumination

changes.

Parametric image registration is a classical parameter estimation problem in the sense that, as always, it

consists in fixing some parametric model and then determining its parameters from the data by minimizing

some criterion. The parametric model that explains the deformation between the images to register is typically

called a warp. The general principle of image registration is illustrated in figure 5.1.

Figure 5.1: General principle of image registration. Image registration consists in estimating the transformations that modify

an image so that it matches another one. Several type of transformations may be considered. In this thesis, we are mainly

interested in geometric transformations.

There are two main approaches for parametric image registration: the direct approach and the feature-

based approach. As its name may indicate, the direct approach relies on the information which is directly

available such as the colour of the pixels. With this approach, the criterion to be minimized measures the

colour discrepancy between the warped source image and the target image. In the feature-based approach, the

warp parameters are estimated from a finite set of features. The features are distinctive elements of the images

which are first extracted independently in each image to register. Then, they are matched across the images.

Both approaches have their own advantages and disadvantages. Other approaches such as cross-validation and

frequential approaches may be used to register images. However, we are not interested in these approaches in

this document.

5.1 GENERAL POINTS ON IMAGE REGISTRATION 137

Properties of the direct approach. The main advantage of this approach is the high quantity of data used to

estimate the warp parameters. Another good point is that it does not require one to extract and match features.

On the other side, the direct approach is sensitive to changes of appearance. Besides, it is not suited for

registering images with important displacements since the colour information is correlated to the displacement

only locally.

Properties of the feature-based approach. Contrarily to the direct approach, the feature-based approach

is better suited for large displacements (wide-baseline registration). Another advantage of the feature-based

approach is that they may be robust to illumination changes. The main drawback of the feature-based approach

is that it requires the extraction and the matching of features. Depending on the nature of the images, there

may be only a few feature correspondences which make difficult the estimation of the warp parameters. This

is especially true for badly textured images. The proportion of false point correspondences (outliers) may also

grow quickly when, for instance, the images contains repetitive and undistinguishable patterns.

What is deformed? Once a warp has been estimated between two images, it is natural to deform one of the

images in order to align them. This is something which may be a bit confusing. Indeed, although the warp is

a function from the source image to the target image1, it is generally easier to deform the target image. We

call this technique the inverse warping. It can be achieved without having to compute the inverse warp. This is

realized as follows. We take an empty picture of the same size than the source image. The colour of each pixel

of this picture (the warped target) is the colour of the corresponding pixel in the target image determined by

applying the estimated warp. With this approach, the target image is not completely warped. Indeed, the pixels

of the target image which do not have an antecedent in the domain of the source image will not be warped. This

can be obviated using the same principle except that we consider an initial domain for the warped target image

larger than the one of the source image. The principle used to warp the target image is illustrated in figure 5.2.

If one is ready to make some approximations, it is also possible to make a forward warping of the source

image. Therefore, the source image is aligned to the target image. This can be achieved by considering the

pixels as ‘little squared area’. The corners of these squares can then be transformed using the estimated warp.

Even if we use deformable warps, the pixels are transformed in a rigid way. Practically, the warped source

image can be represented as a vectorial image. It can then be converted to a bitmap using a standard graphical

library such as Cairo2. Although quite natural, this approach has the major drawback of being much heavier in

terms of computational time than the inverse warping. The forward warping is illustrated in figure 5.2.

Derivatives of an image. As it will become clearer later in this chapter, most of the approaches to image

registrations requires one to compute the derivatives of images. Indeed, since image registration is formulated

as an optimization problem, the optimization algorithms often need derivative information such as the gradient

or the Hessian matrix. Let I be an image. It is a common assumption to consider that I is defined over a

rectangular bounded subdomain of R2. However, in practice, this is not quite true. Indeed, a digital image is

defined over a rectangular bounded subdomain of Z2. Therefore, one of the most simple technique to compute

the derivatives of an image consists in using finite differences. Finite differences come in different flavours. For

instance, if we consider the derivative of the image I with respect to x, i.e. the first free variable of the function,

then we have:

1The fact that a warp is naturally a function from the source image to the target image is revealed when we use a visualisation grid

to display the warp.
2http://cairographics.org/

138 Chapter 5. IMAGE REGISTRATION

Source image

Target image

Warp

Warped target

Target image

The color of the pixel in the warped target is the color of the target
image at the position .

Source image
Warped source

The warped source is obtained by deforming the pixels of the source
image (considered as `little squares') with the warp.

W
ar

p
re

pr
es

en
ta

tio
n

In
ve

rs
e

w
ar

pi
ng

Fo
rw

ar
d

w
ar

pi
ng

Figure 5.2: Illustration of the inverse and forward warping.

5.1 GENERAL POINTS ON IMAGE REGISTRATION 139

• Forward finite differences:
∂I
∂x

(q) ≈ I
(

q+

(
1

0

))

− I(q) (5.1)

• Backward finite differences:
∂I
∂x

(q) ≈ I(q)− I
(

q−
(
1

0

))

(5.2)

• Central finite differences:
∂I
∂x

(q) ≈ I
(
q+

(
1
0

))
− I

(
q−

(
1
0

))

2
(5.3)

In this document, the default choice is the forward finite differences. Note that there exists other more complex

techniques to evaluate the derivatives of a discrete function (see, for instance, (Brunet, 2007; Malgouyres et al.,

2008).

5.1.2 Problem Statement

5.1.2.1 Image Registration as an Optimization Problem

Typical cost function. Image registration may be cast into a parameter estimation problem. In its most

generic form, the non-rigid image registration problem is written as:

min
p
Ed(p) + λEs(p), (5.4)

where p is the vector containing the parameters of the warp (such as the control points of a B-spline). Ed is

the data term which compares the information between the source and the target images. The term Es is the

smoothing term that regularizes the warp. The hyperparameter λ controls the relative importance of the data

and smoothing terms. We now give some details of the different terms presented in equation (5.4).

Direct approach and least-squares. The most common data term for the direct approach to image regis-

tration is the sum of squared difference (SSD). It is computed between the source image and the target image

deformed with the estimated warp:

Ed(p) =
∑

q∈R
‖S(q)− T (W(q;p))‖2 , (5.5)

where R is the region of interest (ROI). It is a set of pixels of the source image that should be carefully chosen.

More details on this region of interest along with some of our contributions related to this matter will be given

in section 5.2. The principle of the SSD term for direct image registration is illustrated in figure 5.3.

Mutual Information. The Mutual Information (MI) is another common principle to image registration that

raises a different data term. It has been independently introduced in (Collignon et al., 1995; Viola, 1995). Note

that we do not use this kind of criterion in the rest of this document. The MI is the quantity of information of

the first image which is contained in the second image. The MI is maximal when the two images are identical.

There exists several definitions. We report here the resulting data term presented in (Gay-Bellile, 2008):

Ed(p) = ζ(S) + ζ(T (W(•;p)))− ζ(S, T (W(•;p))), (5.6)

where ζ is the Shannon entropy (Shannon, 1948). It measures the quantity of information contained in a

sequence of events. The entropy of an image is related to its complexity. A completely untextured image has

140 Chapter 5. IMAGE REGISTRATION

Figure 5.3: Illustration of the principle of the SSD term for direct image registration. The SSD term is the sum of the difference

of colours of the pixels in the ROI (in the source image) and their correspondent in the target image (computed using the warp

induced by the parameters p).

a low entropy while a highly textured image has a higher value. The joint entropy ζ(S, T (W(•;p))) measures

the quantity of information shared by the images S and T (W(•;p)). If these images are identical then their

joint entropy is minimal. It may be computed from the joint histogram of the two images. Maximizing the MI

is thus equivalent to searching for the transformation that results in a maximum of information in the images

while having the images as similar as possible. Contrarily to the other types of approaches, the MI criterion

does not rely directly on the colour information. It makes the MI criterion particularly well-suited for multi-

modal image registration. This is the reason why the MI criterion is very popular in medical image registration

(Modersitzki, 2004; Pluim et al., 2003; Rueckert et al., 1999).

Feature-based criterion. Typically, the data term used in feature-based image registration measures the

(squared) Euclidean distance between the features of the source image transformed with the warp and the

features of the target image. This may be written as:

Ed(p) =
∑

{f↔f ′}∈Θ

∥
∥W(f ;p)− f ′

∥
∥2 , (5.7)

where Θ is a set of feature correspondences that was previously detected and matched in the images.

M-estimators and robustness. A simple yet powerful extension of the above-mentioned data term consists

in using an M-estimator instead of a squared Euclidean distance. This allows one to get estimation procedures

more robust to erroneous data. Erroneous data are very common and almost unavoidable with the two most

common approaches to image registration. For instance, in the feature-base approach, the are often false feature

correspondences. This generally comes from a poor extraction of the features or from a bad matching of

the features. The standard non-robust data term for feature-based image registration is modified with an M-

estimator in the following way:

Ed(p) =
∑

{f↔f ′}∈Θ
ρ
(
W(f ;p)− f ′

)
, (5.8)

In the case of the direct approach, outliers are due to phenomena such as occlusions and specularities.

5.1 GENERAL POINTS ON IMAGE REGISTRATION 141

Indeed, if such phenomena arise then the colour of two corresponding pixels may be quite different. The use

of an M-estimator in the direct approach has been utilized in, for instance, (Arya et al., 2007; Odobez and

Bouthemy, 1995). With an M-estimator, the initial data term of the direct approach is transformed into the

following one:

Ed(p) =
∑

q∈R
ρ (S(q)− T (W(q;p))) . (5.9)

Regularization term. As we said in equation (5.4), the cost function for non-rigid image registration gener-

ally includes a smoothing term (also known as regularization term). Many such terms have been proposed in

the literature. For instance, one may use the smoothing term of order 1 proposed in (Horn and Schunck, 1981):

Es(p) =
∫∫

Ω

∥
∥
∥
∥

∂W
∂x

(q;p)

∥
∥
∥
∥

2

+

∥
∥
∥
∥

∂W
∂y

(q;p)

∥
∥
∥
∥

2

dq, (5.10)

where Ω is the definition domain of the warpW . Alternatively, one may use a smoothing term of second order

: the bending energy. It is similar to the bending energy used in the previous chapter for range data fitting. With

a warp, which is a function from R2 to R2, the bending energy is defined by:

Es(p) =
2∑

k=1

∫∫

Ω

∥
∥
∥
∥

∂2Wk

∂x2
(q;p)

∥
∥
∥
∥

2

+ 2

∥
∥
∥
∥

∂2Wk

∂x∂y
(q;p)

∥
∥
∥
∥

2

+

∥
∥
∥
∥

∂2Wk

∂y2
(q;p)

∥
∥
∥
∥

2

dq, (5.11)

whereW1 andW2 are respectively the first and the second coordinates ofW .

5.1.2.2 Direct Methods

Here, we present some more advanced topics on the direct methods for image registration. We keep talking

about general elements.

Handling Illumination Changes The basic criterion of equation (5.5) for the direct approach to image reg-

istration is extremely sensitive to illumination changes. Indeed, there may be some important discrepancies in

the colour of the corresponding pixels between images taken under different circumstances (lighting conditions,

cameras, etc.) There exists several approaches to obviate this problem. For instance, the illumination changes

can be explicitly modelled by adding a photometric transformation in the criterion. The criterion thus becomes:

Ed(p,u) =
∑

q∈R
‖S(q)− P(T (W(q;p));u)‖2 . (5.12)

The transformation P parametrized by the vector u represents the illumination changes. Therefore, the op-

timization takes place simultaneously over p and u. This type of approach has been used in, for instance,

(Bartoli, 2008a; Silveira and Malis, 2007).

Another solution to overcome the problems related to illumination changes is to estimate the geometric

transformation on data invariant to such changes. For instance, a normalization of the images may introduce

some kind of robustness to global illumination changes (such global transformation might appear when the

images to register have been taken with different cameras). In (Pizarro and Bartoli, 2007), the images are

converted into a different colour space which is invariant to shadows.

Multi-scale approaches One major drawback of the direct approaches to image registration is the fact that

they are usually able to estimate the deformation only if it is not too wide. A partial remedy to this problem

142 Chapter 5. IMAGE REGISTRATION

is the use of a multi-scale approach (Lindeberg and ter Haar Romeny, 1994). The underlying idea of such

approaches is to first estimate the geometric deformation on a low resolution version of the images and then

propagating the estimated deformation to higher resolutions. A pyramid of images is thus constructed along

with the registration process. Several techniques may be used to construct a low resolution version of an image.

For instance, one may compute the value of a pixel at the level k as a weighted mean of the pixels at the level

k−1. The weights are typically determined with a bell-shaped Gaussian curve. Note that in image registration,

the multi-scale approach works quite well for large translations. For other types of geometric transformation, it

is generally less efficient.

5.1.2.3 Feature-Based Approach

We now give some supplementary details on the feature-based approach to image registration. In particular, we

quickly review some very common types of features. We also say a word on the important step of matching

the features. Detecting and matching feature is the first step in feature-based image registration, nonetheless

essential to successfully register images.

Features. Features are distinctive elements of an image. They can be viewed as a high level representation

of an image since they abstract the content of an image. There exists many types of features. In a nutshell,

features can be classified into two main categories : the point-wise features (keypoints) and the area-based

one. An algorithm in charge of extracting features is named a detector. In addition to a spatial information, a

descriptor is often associated to a descriptor. The descriptor can be viewed as a characteristic signature of the

feature. They are used to couple the features across several images relying on the principle that features with

similar descriptors are likely to represent the same point.

A desirable property for any feature is to be invariant, i.e. to have a descriptor that does not depend too

much on certain transformations. For instance, a feature can be invariant to a change of illumination or to a

geometric transformation such as a rotation.

We now give some explanations on the most commonly used features in image registration. Supplementary

general informations on features may be found in, for instance, (Szeliski, 2006; Tuytelaars and Mikolajczyk,

2007).

SIFT. SIFT (Scale Invariant Feature Transform) is one of the most popular keypoint detectors. It has

been introduced in (Lowe, 1999). The SIFT feature descriptors are invariant to scale, orientation, and partially

invariant to illumination changes (Lowe, 2004). It has also been shown to perform quite well under non-rigid

deformations (Doshi et al., 2008).

We now give the general idea behind the SIFT detector. We do not give here the detailed algorithm since

it is not the core of this work. In the rest of this document, features detectors are just tools we sometimes

use in experiments. With SIFT, the locations of the keypoints are the minima and the maxima of the result

of Difference Of Gaussians applied to a pyramid of images built from the initial image by smoothing and

resampling. Using a pyramid of images makes SIFT invariant to the scale. The points obtained in this way are

then filtered: points with low contrast and points along edges are discarded. The dominant orientations of the

resulting keypoints are then computed. The description of the keypoints are computed relatively to the dominant

orientations. This allows one to be invariant to the orientation. The SIFT descriptor (typically a sequence of 128

bytes) is finally computed by considering the pixels around a radius of the keypoint location. This descriptor

encodes an orientation histogram computed for all the pixels in the neighbourhood of the keypoint.

5.2 DIRECT IMAGE REGISTRATION WITHOUT REGION OF INTEREST 143

SURF. SURF (Speeded Up Robust Features) is another keypoint detector which shares many similarities

with SIFT. It was first introduced in (Bay et al., 2006). Supplementary details may be found in (Bay et al.,

2008). The main advantage of SURF is that it is much faster than SIFT. SURF is built on the same concepts

than SIFT but with some radical approximations to speed up the detection process (Schweiger et al., 2009).

Instead of using a the difference of Gaussian operator to detect the maxima and the minima in the pyramid of

images, SURF uses the determinant of the Hessian. The descriptor associated to the keypoints are also similar

to the one produced by SIFT. It is computed from orientation histograms in a square neighbourhood centred at

the keypoint location. The resulting descriptor is a vector of 64 elements.

MSER. MSER (Maximally Stable Extremal Region) is one of the most common method to detect area-

based regions in images. It was developed by (Matas et al., 2002) to find correspondences between image

areas from two images with different points of views. Additional information may be found in (Mikolajczyk

and Schmid, 2005; Mikolajczyk et al., 2005; Tuytelaars and Mikolajczyk, 2007). It relies on the concept of

extremal region. Let I be an image and let Q be a contiguous region of I. Let us denote ∂Q the contour of the

region Q. Q is an extremal region if either ∀p ∈ Q, ∀q ∈ ∂Q : I(p) > I(q) (maximum intensity region) or

∀p ∈ Q, ∀q ∈ ∂Q : I(p) < I(q) (minimum intensity region). A maximally stable extremal region is defined

as follows. Let Q1 ⊂ . . . ⊂ Qi be a sequence of nested extremal regions. The region Qi⋆ is maximally stable if

and only if the quantity f(i) = |Qi+δ rQi−δ|/|Qi| has a local minimum at i⋆. δ is a parameter of the method.

MSER has many interesting properties. For instance, it is invariant to affine transformation of image inten-

sities. It is also stable: only the regions whose support is nearly the same over a range of thresholds are selected.

MSER automatically detects regions at different scales without having to explicitly build an image pyramid.

Computing the MSER regions can be achieved quite rapidly (Nistér and Stewénius, 2008). Besides, MSER has

been compared to other region detectors in (Mikolajczyk et al., 2005) and it has been shown to consistently

give the best results for many tests. MSER is therefore a reliable region detector.

5.2 Direct Image Registration without Region of Interest

As a reminder of section 5.1.2.1, direct image registration in its most basic form amounts to solve the following

minimization problem:

min
p

∑

q∈R
‖S(q)− T (W(q;p))‖2 . (5.13)

For the sake of simplicity, we forget about the regularization term in equation (5.13) since it is not of central

importance in the contribution proposed in this section. We also remind here the classical variant of equa-

tion (5.13) which consists to use an M-estimator in order to get a robust registration algorithm:

min
p

∑

q∈R
ρ (S(q)− T (W(q;p))) . (5.14)

This formulation is important in this section since the proposed contribution relies on it.

In this section, we present a contribution we made concerning direct image registration. More precisely,

this contribution deals with the problems related to the region of interest (ROI). As it will be explained later in

this section, the ROI may represent a major difficulty when doing direct image registration. Here, we propose a

new solution that allows one to use the direct approach to register images without needing a ROI. This is made

possible by a wise use of the robust framework to direct image registration that relies on saturated M-estimators.

144 Chapter 5. IMAGE REGISTRATION

5.2.1 Introduction

As said previously in this chapter, standard direct image registration consists in estimating the geometric warp

between a source and a target images by maximizing the photometric similarity for the pixels of a Region of

Interest (ROI). The ROI must be included in the real overlap between the images otherwise standard registration

algorithms fail. As it will be shown later, determining a proper ROI is a hard ‘chicken-and-egg’ problem since

the overlap is only known after a successful registration. Almost all algorithms in the literature consider that

the ROI is given. This is generally either inconvenient or unreliable.

In this section we propose a new method that registers two images without using a ROI. The key idea of

our method is to consider the off-target pixels as outliers. We define the off-target pixels as those pixels of the

source image mapped outside the target image by the current warp. We use the classical robust M-estimation

framework to handle both the off-target pixels and the usual outliers caused, for instance, by occlusions. With

our formulation, the true image overlap is defined as the set of inliers.

Experiments on synthetic and real data with the homography and Free-Form Deformation based on B-

splines show that our method outperforms standard approaches in terms of accuracy and robustness while

precisely retrieving the overlap in the source and target images.

Registration resultRegistration result
Pixels that do not
belong to the overlap
discovered with our
method while
registering the images

Example of rectangular
region of interest

Source imageSource image Target imageTarget image

Figure 5.4: We propose a new algorithm that does not require one to define a region of interest (ROI). Our algorithm discovers

the exact overlap between two images while registering them. Using the rectangular ROI in dashed line defeats classical

methods since it contains pixels that do not belong to the overlap.

The overlap and the RoI. The direct approach to image registration is interesting because it does not rely

on feature correspondences. However, standard registration algorithms require a ROI R included in the overlap

of the images. This is a difficult ‘chicken-and-egg’ problem since the overlap can only be determined after a

successful registration. There is no known satisfactory solution to this problem.

Let OS be the image overlap, i.e. the set of pixels of the source image that are also seen in the target image:

OS =
{
q ∈ ΩS | q′ ∈ ΩT and S(q) ≈ T (q′)

}
, (5.15)

where q′ is the pixel q transformed with the true deformation between S and T . It is obvious that the cost

function equation (5.13) or equation (5.14) cannot be evaluated at those pixels that do not belong to OS . As

a consequence, R must be included in OS , otherwise the registration algorithms based on equation (5.13) or

equation (5.14) will fail. Besides, it is better to have a ROI as large as possible in order to have the greatest

quantity of information to estimate the warp. The problem here is that the real overlap OS is known only after

a successful registration of the images.

5.2 DIRECT IMAGE REGISTRATION WITHOUT REGION OF INTEREST 145

Previous work. As we will review in section 5.2.2.1, the ROI is often a polygonal region in the source image

defined either by the user or by some ad hoc means (Bartoli, 2008a). This lacks automatism and may be

unreliable. The adaptive ROI (Pires and Aguiar, 2004) is another approach. It considers the entire domain

of the source image as an initial ROI and updates it during the optimization process. As we will review in

section 5.2.2.2, the cost function of (Pires and Aguiar, 2004) is extremely hard to minimize and has global

minima that do not correspond to the correct solution (see figure 5.5).

6400-640

2

1

0

x105

(pixels)

Adaptive RoI

Our approach

V
al

ue
 o

f t
he

co
st

 fu
nc

tio
n

Figure 5.5: Profile of the cost functions of the adaptive ROI approach of (Pires and Aguiar, 2004) (red dashed curve) and our

approach (green solid curve). The source and the target images are 640 pixels wide. The simulated warp is a translation along

the x-axis parametrized by ∆x (more details in section 5.2.2.2). The cost function of (Pires and Aguiar, 2004) vanishes for a

warp that creates no overlap while our cost function has only one global minima that corresponds to the true translation (i.e.

∆x = 0).

Contribution. We propose a novel approach to direct image registration. It is fundamentally different from

standard approaches in that it does not need a ROI. This is made possible by considering the off-target pixels

as outliers; the theoretical foundations of this principle are explained in section 5.2.3. The cost function we

propose to optimize takes into account all the pixels of the source image. A fixed penalty that corresponds

to the one given to usual outliers is associated to the off-target pixels. We then use the standard robust M-

estimation framework of equation (5.14) to handle both the usual outliers and the off-target pixels in a unified

way. Our new approach has several advantages. First, the proposed cost function does not have trivial minima

(see figure 5.5). Second, it solves all the above-mentioned problems related to the ROI. Third, the overlap is

automatically obtained as the set of inliers.

5.2.2 Region of Interest: State of the Art

5.2.2.1 Rectangular Region of Interest

A common approach used to define the ROI consists in guessing a maximal per-pixel displacement. The ROI

is then chosen as a rectangle obtained by removing to the source image domain a margin of width larger than

the hypothesized maximal displacement. Ideally, the width of this margin should be as close as possible to the

actual maximal displacement, rarely known before registration. The margin width is commonly overestimated

so that the optimization algorithm will not fail. Nonetheless, a large ROI provides more information to estimate

the warp accurately. Moreover, the size of the ROI affects the profile of the cost function in equation (5.5).

A simple experiment inspired by (Pires and Aguiar, 2004) illustrates this phenomenon. Figure 5.6 shows, for

different margin sizes, the evolution of the cost function versus a single shift parameter ∆x (the amplitude of

a translation along the x-axis). The source and the target images are identical except for a Gaussian noise with

standard deviation equal to 5% of the maximal pixel value. Figure 5.6 shows that a small margin (a large ROI)

results in a smooth cost function but has dramatically restricted range of admissible translations. Using a larger

margin (a smaller ROI) increases the range of possible translations but creates a lots of local minima in the cost

function.

146 Chapter 5. IMAGE REGISTRATION

(pixels)
0 100-100

V
al

ue
 o

f t
he

co
st

 fu
nc

tio
n

0.5

1.0

1.5

2.0

2.5

x104

margin: 10 pixels

margin: 70 pixels

margin: 130 pixels

Figure 5.6: Profile of the data term of equation (5.5) for rectangular ROI with margins ranging from 10 to 130 pixels (for images

of size 640× 480).

Large margin
(small RoI)

Small margin
(large RoI)

Range of admissible
transformations

Quantity of
information available
for the registration

Table 5.1: Respective advantages and disadvantages of the large and small margins. Note that neither of them has all the

advantages.

5.2.2.2 Adaptive Region of Interest

An alternative to the rectangular ROI has been proposed in (Pires and Aguiar, 2004). In this approach, the fixed

ROI R is replaced by an adaptive ROI RA(p). The minimization problem thus becomes:

min
p

∑

q∈RA(p)

(S(q)− T (W(q;p)))2 . (5.16)

For a given set of parameters p, RA(p) contains all the pixels (except for a 1-pixel margin used to compute the

target image derivatives by finite differences) from the source image that, once warped, belongs to the domain

of the target image, i.e. RA(p) = {q ∈ ΩS | q′ ∈ ΩT } with q′ = W(q;p). Although this method does not

require one to define a ROI, it is not fully satisfactory. First, problem (5.16) is badly posed in the sense that

there exists an infinite number of minima that do not correspond to the correct warp parameters. These minima

appear when there is no overlap between the source and the warped target images. This fact is illustrated with

an experiment similar to the one used in section 5.2.2.1. We observe in figure 5.5 that the cost function of

problem (5.16) is null (and thus minimal) as soon as the domains do not overlap (|∆x| > 640). Second, the fact

that RA(p) depends on p makes problem (5.16) hard to solve rigorously. The authors of (Pires and Aguiar,

2004) propose to neglect the dependency on p and alternate the estimation of RA and p. Third, the adaptive

ROI algorithm is not robust to outliers and, as such, it cannot properly handle occlusions and specularities.

5.2.3 Direct Image Registration without Region of Interest

We propose a new method to direct image registration that does not need a ROI. It thus avoids the above

mentioned problems related to the ROI. Our new cost function uses all the pixels of the source image, as the

adaptive ROI of (Pires and Aguiar, 2004). However, as the example of figure 5.6 shows, our cost function has

no trivial minima. We will show that it is also much easier to optimize rigorously. The key idea of our method

is to penalize the off-target pixels with a fixed cost. The cost associated to the other pixels remains the usual

5.2 DIRECT IMAGE REGISTRATION WITHOUT REGION OF INTEREST 147

robust colour discrepancy of equation (5.14). To some extent, this maximizes the size of the overlap between

the two images. We use the same penalty for the off-target pixels and the outlying pixels, for reasons explained

below.

Figure 5.7: Pixels out of the field of view (b) can be considered as usual outliers (a).

Derivation. Imagine a target camera with an unbounded field of view. Such a camera would produce images

with an infinite domain. Imagine now that a plane with a rectangular hole is placed between the camera and the

observed scene, as figure 5.7 (b) illustrates. The part of the scene visible through the hole corresponds to the

actual target image T . The rest of the scene is not seen because it is occluded by the plane, exactly as for the

pixels hidden by an external occluder, as shown in figure 5.7 (a). With this reasoning, it becomes natural for

one to handle off-target pixels as usual outliers.

A direct yet incomplete mathematical statement of our idea is the following minimization problem:

min
p

∑

q∈ΩS

q′∈ΩT

ρ
(
S(q)− T (q′)

)
+
∑

q∈ΩS

q′ 6∈ΩT

c2

6
. (5.17)

Here, we consider that the M-estimator is the Tukey’s M-estimator, detailed in section 3.1.2.2. As a reminder,

the ρ-function of this M-estimator is:

ρ(x) =

c2

6

(

1−
(

1− x2

c

)3
)

if |x| ≤ c
c2

6 otherwise,

(5.18)

where c is a constant tuning the sensitivity of the M-estimator to outliers. We use this particular M-estimator

because it has the interesting property of being saturated, i.e. it is constant after a certain threshold (c). Note

that the second term in equation (5.17) corresponds to the value given to outliers by the Tukey’s M-estimator.

Solving problem (5.17) is difficult since two sums are mixed, with a number of terms varying as a function of p

since q′ =W(q;p). First of all, we rewrite the fixed penalty term:

min
p

∑

q∈ΩS

q′∈ΩT

ρ
(
S(q)− T (q′)

)
+
∑

q∈ΩS

q′ 6∈ΩT

ρ(x0), (5.19)

where x0 is any value saturating the M-estimator: ρ(x0) =
c2

6 . With the bisquare ρ-function, any value x0 such

148 Chapter 5. IMAGE REGISTRATION

that |x0| ≥ c is suitable (see equation (5.18)). Problem (5.19) can be rewritten:

min
p

∑

q∈ΩS

ρ
(

[q′ ∈ ΩT]
(
S(q)− T (q′)

)
+ [q′ 6∈ ΩT]x0

)

, (5.20)

where [] is the operator such that [a] = 1 if a is true and [a] = 0 otherwise. We rewrite problem (5.20) by

introducing the image T∞:

T∞(q) =

T (q) if q ∈ ΩT

α otherwise
and ΩT∞ = R2, (5.21)

where α is any value such that ‖S(q)− α‖ > x0. Finally, our method is to solve:

min
p

∑

q∈ΩS

ρ
(
S(q)− T∞(q′)

)
. (5.22)

Problem (5.22) is solved with standard Iteratively Reweighed Least-Squares (see section 2.2.2.11) or with a

more generic algorithm such as Newton’s method (see section 2.2.2.4).

M-estimator and overlap. An interesting property of our approach is that it automatically discovers the

overlap. For instance, with Tukey’s bisquare M-estimator, a pixel q such that
(∣
∣ρ
(
S(q)− T∞(q′)

)
− c2

6

∣
∣ ≤ ε

)

can be considered as an outlier (with ε a small constant, e.g. 10−4). The overlap in the source image is the set of

source pixels satisfying this condition. The overlap in the target image is the warped source overlap. Recovered

overlaps are illustrated in figure 5.4 and in section 5.2.4.2.

5.2.4 Experimental Results

5.2.4.1 Synthetic Data

Data generation. We generated synthetic data in the following manner. First, a warp (homography or B-

spline) is determined by interpolating some randomly generated point correspondences. The source image is

obtained by unravelling a texture image with the previously computed warp and the texture image is used as

the target image. The average distance between the point correspondences controls the warp magnitude γ (in

pixels). A proportion α of the source and target images is then replaced with data from a different image to

simulate occlusions. Last, Gaussian noise with standard deviation σ is added to the images. We used colour

images with intensities coded with real values between 0 and 1. The images are 320 × 240 pixels wide.

Figure 5.8 gives an illustration of the generation process.

Experimental setup. The influence of several factors is studied: the transformation magnitude γ, the amount

of noise σ and the proportion of erroneous data α. Each one of these factors is studied independently with

default values: γ = 8 pixels, α = 10% and σ = 0.1 (10% of the maximal pixel intensity value). Several

algorithms are compared: rectangular ROI (RECT), the adaptive ROI of Pires and Aguiar (2004) (ADAP) and our

approach (MAXC). Different variants of the RECT algorithm are considered: narrow (10%) and large (25%)

margins without M-estimator (RECTN, RECTL) and with M-estimator (RECTNM, RECTLM). The reported

results are averages over 100 trials.

Optimization failures. As explained in section 5.2.2.1, a ROI of fixed size can lead to a failure of the opti-

mization process. Figure 5.9 shows in which proportion such failures occur for the experiments of the next 3

5.2 DIRECT IMAGE REGISTRATION WITHOUT REGION OF INTEREST 149

(a)

(b)

(c)

Source imageSource image Target imageTarget image

Figure 5.8: Synthetic data generation. (a) Texture image and deformation used to generate the source and the target images.

(b) The warp is unravelled to generate the source image. (c) Noise and outliers are added to the images.

paragraphs and for the default values. Note that convergence towards a false solution (local minimum) is not

counted as a failure. We observe that there are more failures with a wide rectangular ROI (RECTN) than with a

small one (RECTL). There are less failures with an M-estimator (RECTNM, RECTLM) than without because

the steps of the optimization algorithms tend to be smaller. In the sequel, when an algorithm fails to converge,

the reported measurements are from the last valid iteration.

R
ec
tL

R
ec
tN

A
da
p

M
ax
C

10%

5%

0% R
ec
tL
M

R
ec
tN
M

Figure 5.9: Failure rates. ADAP and MAXC never fail because they do not rely on a fixed ROI.

Number of iterations. Figure 5.10 shows the number of iterations. Overall, the convergence is faster with

the homographic than with the B-spline warp. This comes from the fact that the homographic warp is global.

The apparent rapidity of the algorithms relying on a rectangular ROI stems from the fact that these algorithms

can fail before convergence when the given ROI is not valid. Our approach, MAXC is generally better than

ADAP which is the only other method that does not require a ROI. However, MAXC takes more iterations to

converge when the transformation magnitude is large. This is explained by the fact that many pixels from the

source image, once transformed, do not belong to the target image domain. The convergence is slightly slowed

down since these pixels are penalized with our approach.

Geometric error. Figure 5.11 shows the geometric error, the discrepancy in pixels between the estimated and

the ground truth transformations. We observe that the amount of noise does not influence much the performance

of the algorithms. On the contrary, the geometric error is influenced by the transformation magnitude and by the

proportion of outliers. This is especially true for the approaches that do not include an M-estimator. Compared

to the other methods, our approach is the one that gives the best results. We can see that, with our approach,

150 Chapter 5. IMAGE REGISTRATION

2 	 8 11 14
0

10

20

30

0 0.0	 0.1 0.1	 0.2
0

10

20

30

0 0.1 0.2 0.3 0.4
0

10

20

30

0

100

200

300

400

	00

0

100

200

300

400

00

0

100

200

300

400

	00

H
om

og
ra

ph
y

B
-S
pl
in
e

Number of
iteration

versus

RectN
RectNM
RectL
RectLM
Adap

MaxC

: amplitude of the transformation (pixels) : amount of noise : proportion of erroneous data

Figure 5.10: Influence of several factors on the the number of iterations. The number of iterations done by the algorithms based

on a rectangular ROI is relatively low because these methods can stop prematurely (fail) as soon as the ROI is not valid.

the geometric error is often less than one pixel. This result is particularly important because it shows that our

approach is not biased by the penalty term used for the pixels which are warped outside of the target domain.

H
om

og
ra

ph
y

B
-S
pl
in
e

Geometric
error

versus

RectN
RectNM
RectL
RectLM
Adap

MaxC

: amplitude of the transformation (pixels) : amount of noise : proportion of erroneous data

2 � 8 11 14
0

2

4

6

8

0 0.05 0.1 0.15 0.2
0

2

4

6

0 0.1 �.2 0.3 0.4
0

2

4

6

8

0

1

2

3

4

0

0.5

1

1.5

2

0

1

2

3

Figure 5.11: Influence of several factors on the geometric error. Our approach (MAXC) gives the best results. Globally, the

approaches relying on M-estimators are the best ones.

Photometric error. The average photometric error obtained after the last iteration of the studied algorithms

is reported in Figure 5.12. The smallest errors are always obtained with our approach whatever the varying

factor and the geometric transformation are.

5.2.4.2 Real Data

Overlap. We consider a source and a target images of a planar scene taken from two different view points

and with an occlusion in the target image. Under these conditions, the warp between the two images is a

homography. Figure 5.13 shows the ROI used during the last iteration of four different algorithms. This ROI is

shown in both the source and the target images. The difference image between the warped target and the source

images is also shown. It shows that our approach, MAXC, is the only one to estimate the correct homography.

The main point of figure 5.13 is that the final ROI determined with MAXC corresponds exactly to the true

overlap between the images. The ROI used by ADAP at convergence does not take into account the occluder.

Consequently, ADAP is not able to recover correctly the homography. The ROI utilized by RECTLM does

not contain enough pixels making this approach unable to determine precisely the homography. Finally, the

algorithm RECTNM fails to converge since its ROI contains pixels that do not belong to the overlap (figure 5.13

shows the last valid iteration).

5.2 DIRECT IMAGE REGISTRATION WITHOUT REGION OF INTEREST 151

H
om

og
ra

ph
y

B
-S
pl
in
e

RectN
RectNM
RectL
RectLM
Adap

MaxC

: amplitude of the transformation (pixels) : amount of noise : proportion of erroneous data

0.22 8 11 14
�

�.0

�.1

0.1

�.2

0.2

� �.0 �.1 0.1 �.2
0

0.1

0.2

0.3

0 0.1 �.2 0.3 0.4
0

0.1

�.2

0.3

0

0.0

�.1

0

0.0

�.1

0

0.05

0.1

Photometric
error

versus:

Figure 5.12: Influence of several factors on the photometric error. The best results are always obtained with our approach

whatever the transformation model and whatever the studied factor.

RectGMRectGM AdapAdapRectPMRectPM MaxCMaxC

Figure 5.13: Examples of registration results for different algorithms. The first row corresponds to the source image, the second

row to the target image, and the last row to the difference between the source and the warped target image. The red pixels

are the pixels not included in the ROI during the last iteration of the algorithms. Note that the ROI computed by our approach

(MAXC) corresponds to the true overlap (taking into account both the field of view and the occluder). Our approach is the only

one that successfully registers this pair of images.

152 Chapter 5. IMAGE REGISTRATION

The widest panorama. We consider a video captured by a camera that rotates around its optical centre with

a uniform movement from left to right. Consequently, the successive images are linked with homographies.

The goal of this experiment is to build a panorama as wide as possible by taking the first image of the video

and the furthest image for which the registration is successful. As shown in figure 5.14, the widest panoramas

are obtained with ADAP and MAXC. For this video, there are no occluders and, thus, the results of ADAP

and MAXC are similar. The algorithms RECTN and RECTL get the smallest panoramas since the maximal

displacements are dictated by margin sizes.

���

���

���

���

Figure 5.14: Panorama calculated with (a) RECTN, (b) RECTL, (c) ADAP and (d) MAXC. The widest panoramas are obtained

with ADAP and our approach: MAXC.

Deformable mosaic. An example of deformable registration using our method is given in figure 5.15. This

figure illustrates that our approach automatically retrieves the true overlap in both the source and the target

images. Note that a video corresponding to that example is provided as supplemental material.

(a) (b)

(c)

Figure 5.15: Example of deformable mosaic. (a): source image ; (b): target image ; (c) mosaic. The red pixels in (a) and (b)

are the pixels that do not belong to the overlap determined with our approach.

Pattern tracking. Figure 5.16 illustrates the tracking of a pattern in a video sequence. Three approaches are

compared: our approach, and two approaches using a fixed rectangular ROI (defined with either a large margin

or a narrow margin). The object to track is a deforming banknote. We thus use a FFD warp with 5× 5 control

points. The pattern (i.e. the source image) to track is defined as a part of the first image in the video sequence.

The pattern is registered in each new image (which plays the role of the target image) using as an initial solution

the registration determined for the previous image. Figure 5.16 shows that the approaches relying on fixed ROI

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 153

fail as soon as a part of the pattern is not visible in the target image. Such problems cannot happen with our

approach. Figure 5.16 also illustrates that, with our approach, the true overlap is correctly determined in both

the source (pattern) and the target images. The fourth and fifth columns of figure 5.16 shows that our approach

handles erroneous data (occlusions and specularities) and the overlap in a unified manner.

Our approach
Overlap in the
source image

(pattern)

Overlap in the
target image

Rectangular RoI
Large margin

Rectangular RoI
Narrow margin

1 300 708 867 1096Image #

In the next image, there exists pixels in the RoI that,
once warped, do not belong anymore to the domain
of the target image (off-target pixels).

Occlusion Specularity

PatternPattern

PatternPattern

PatternPattern

Figure 5.16: Pattern tracking in a video sequence. Only a few frames of the video are shown here (the complete video is

available as supplemental material). For our method (first and second rows), we systematically show the pattern (i.e. the

source image) in order to illustrate the automatic discovery of the true overlap. For the methods that rely on a fixed rectangular

ROI (third and fourth rows), the pattern is shown only once since it does not vary with time. The approaches relying on a

fixed ROI fails prematurely because some pixels of the ROI are warped outside of the target image domain (frame #300 with a

large margin and #708 with a narrow margin). The frames #867 and #1096 shows how our approach handles occlusions and

specularities.

5.2.5 Conclusion

We proposed a new approach to image registration that does not need a ROI. It relies on a theoretical foundation

stating that it is possible to consider the off-target pixels as outliers. This new point of view of direct image

registration resulted in a slight but elegant modification of the cost function usually optimized. An interesting

consequence of our approach is that the true overlap between the images is simply the set of inlying pixels.

Compared to previous approaches, ours solves the problems related to the ROI and to the optimization of the

cost function. The efficiency of our approach was illustrated with extensive experiments. In particular, we

showed that our approach was better than the previous methods in term of accuracy and robustness.

5.3 Pixel-Based Hyperparameter Selection for Feature-Based Image Registra-

tion

5.3.1 Introduction

In this section, we deal with parametric image registration from point correspondences in deformable environ-

ments. In this problem, it is essential to determine correct values for hyperparameters such as the number of

control points of the warp, a smoothing parameter weighting a term in the cost function, or an M-estimator

154 Chapter 5. IMAGE REGISTRATION

threshold. This is usually carried out either manually by a trial-and-error procedure or automatically by op-

timizing a criterion such as the Cross-Validation score (see section 3.2.2). In this section, we propose a new

criterion that makes use of all the available image photometric information. We use the point correspondences

as a training set to determine the warp parameters and the photometric information as a test set to tune the hyper-

parameters. Our approach is fully robust in the sense that it copes with both erroneous point correspondences

and outliers in the images caused by, for instance, occlusions or specularities.

Parametric image registration is the problem of finding the (natural) parameters of a warp such that it aligns

a source image to a target image. In addition to these natural parameters, one also has to determine correct

values for the problem hyperparameters in order to get a proper registration. The hyperparameters are either

additional parameters of the warp itself (warp hyperparameters) or parameters included in the cost function

to optimize (cost hyperparameters). As illustrated in figure 5.17, the hyperparameters greatly influence the

quality of the estimated warp. As reviewed previously, there are two main approaches to image registration: the

feature-based and the pixel-based (or direct) approaches. They both have their own drawbacks and advantages

but neither of them directly enables one to automatically tune the hyperparameters. In this section, we propose

a new method to automatically set the hyperparameters by combining the advantages of the feature-based and

the pixel-based approaches.

As just said, some hyperparameters are linked to the warp. Let W : R2 × Rl → R2 be a warp. It is

primarily parametrized by a set of l parameters arranged in a vector s ∈ Rl. The homography (Hartley and

Zisserman, 2003a; Szeliski, 2006) is an example of warp, often parametrized by the 8 independent coefficients

of the homography matrix. Another example of warp is the Free-Form Deformation (FFD) (Rueckert et al.,

1999) parametrized by l/2 two-dimensional control points. Examples of hyperparameters linked to the warps

include, but are not limited to, the number of control points of an FFD or the kernel bandwidth of a Radial

Basis Function (Bookstein, 1989).

Number of control points
Not having enough control points

leads in a warp which is not
flexible enough to model complex

deformations (top). On the contrary, a
warp with too much control points

is prone to overfit the data (bottom).

Smoothing parameter
A warp estimated with a smoothing
parameter too low overfits the data

and is sensitive to noise and
outliers (top). On the contrary, a

large smoothing parameter leads to
an oversmoothed warp that does not
model well the deformations (bottom).

M-estimator scale parameter
With a small M-estimator scale

parameter, the estimation process
tends to consider all the data points
as outliers: the smoothing term thus
becomes predominant (top). On the

contrary, a large scale parameter leads
to a less robust estimation (bottom).

Correct hyperparameters
automatically estimated with

our new criterion

Source image
(and visualization grid)

Figure 5.17: Illustration of how some typical hyperparameters influence image registration. The contribution of this paper is a

method able to select the proper hyperparameters by combining the advantages of the feature-based and of the pixel-based

approaches to image registration. In this example, the data points were automatically detected and matched with SIFT Lowe

(2004); Vedaldi and Fulkerson (2008). There was approximately 200 point correspondences (not shown in the figure) uniformly

spread across the source image. Among these points, around 10% were gross outliers.

In this section, we use a slightly different formalism than the one used in the introductory section of this

chapter. This is motivated by the fact that we now explicitly consider the hyperparameters bundled in the

feature-based approach to image registration. Let {pi ↔ qi}ni=1 be the point correspondences. We now write

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 155

the optimization problem of the feature-based image registration as:

min
s
E(s;θ), (5.23)

where θ is a vector containing all the hyperparameters and s is the vector of the natural parameters of the warp.

E is the cost function that may be defined as, for instance:

E(s;θ) =
n∑

i=1

ρ
(
W(pi; s)− qi; γ

)
+ λR(s), (5.24)

with ρ an M-estimator, γ its scale parameter,R a smoothing term such as the classical bending energy term dis-

cussed in section 5.1.2.1 (equation (5.11)) and λ a smoothing term controlling the trade-off between goodness-

of-fit and smoothing. In equation (5.24), γ and λ are two examples of cost hyperparameters. Note that other

hyperparameters can appear in the cost function if one decides, for instance, to use more terms. The main

advantages of the feature-based approach to image registration are that it copes with large deformations and

it is efficient in terms of computational complexity (this is particularly true when using an efficient keypoint

detector such as SIFT (Lowe, 2004) or SURF (Bay et al., 2008) combined with a good matching algorithm

such as the improved nearest neighbour algorithm suggested in (Lowe, 2004) and implemented in (Vedaldi and

Fulkerson, 2008)). However, the feature-based approach by itself does not enable one to determine correct

hyperparameters. It is not possible to determine proper values for the hyperparameters by including them di-

rectly in the optimization problem (5.23), i.e. min
s,θ
E(s;θ). This comes from the general arguments that were

developed in section 3.2.

The other approach to image registration is the direct approach (Baker et al., 2004; Irani and Anandan,

1999). In this case, the warp parameters are estimated by minimizing the pixel-wise dissimilarities between

the source image and the warped target image. One advantage of this approach is that the data used for the

parameter estimation is denser than with the feature-based approach. As in the feature-based approach, it is not

possible to estimate the hyperparameters with the direct approach.

Since the hyperparameters cannot be trivially estimated, they are often fixed once and for all according to

some empirical (and often unreliable) observations. It is also possible to choose them manually with some kind

of trial-and-error procedure. This technique is obviously not satisfactory because of its lack of automatism

and of foundations. Several approaches have been proposed to tune the hyperparameters in an automatic way.

None of them is specific to image registration. They generally minimize a criterion that depends on the hyper-

parameters and that assesses the ‘quality’ of the estimated parameters by measuring the ability of the current

estimate to generalize to new data. They include, but are not limited to, Akaike Information Criterion (Cetin

and Erar, 2002), Mallow’s CP (Ronchetti and Staudte, 1994), Minimum Description Length criterion, and the

techniques relying on Cross-Validation scores (Bartoli, 2008b; Brabanter et al., 2003; Wahba and Wold, 1975).

These types of approach were reviewed in section 3.2.2.

The common characteristic of these approaches to automatically select the hyperparameters is that they are

problem generic and, as a consequence, they all rely on the point correspondences only. In the particular con-

text of feature-based image registration, another type of data is available: the photometric information. We thus

propose a new criterion, named the photometric criterion, that uses the point correspondences as a training set

and the pixel colours as a test set. Another way to put it is to say that our approach combines the two classical

approaches to image registration: roughly speaking, the feature-based approach is used to estimate the natural

parameters while the pixel-based approach is used for the hyperparameters. Our photometric criterion is more

flexible than the previous approaches in the sense that it can handle simultaneously several hyperparameters

156 Chapter 5. IMAGE REGISTRATION

of different types (for instance, discrete and continuous hyperparameters can be mixed together). Besides,

our approach is much more robust to erroneous data (noise and outliers) than previous approaches based on

Cross-Validation. Also, it still works when there are only a few point correspondences. Our new criterion is ex-

plained in section 5.3.3 and its ability to properly tune several hyperparameters simultaneously is experimented

in section 5.3.4 with B-spline warps and the Cauchy M-estimator.

5.3.2 Reminder and Complementary Elements on Automatic Hyperparameter Selection

We presented several hyperparameters in the introduction of this section. It is important to understand that

inconsistent results would arise if one tries to estimate the hyperparameters by including them in the optimiza-

tion problem (5.23). For instance, with such an approach, the best way to minimize the contribution of the

regularization term would be to set λ = 0 which is obviously not the desired value. All the same way, making

the M-estimator scale parameter γ tend to 0 would ‘artificially’ decrease the value of the cost function because

it would be equivalent to consider that almost all the point correspondences are outliers (and the cost assigned

to outliers tends to zero when γ → 0).

As we explained in section 3.2, the classical approach to build an automatic procedure for selecting the

hyperparameters consists in designing a criterion C that assesses the ‘quality’ of a given set of hyperparameters

(Bartoli, 2008b; Wahba, 1990). The minimizer of this criterion should be the set of hyperparameters to use.

The complete problem thus consists in solving the following nested optimization problem:

min
s
E(s; argmin

θ
C(θ)). (5.25)

Note that the introduction of the criterion C makes the problem (5.25) completely different from the inconsistent

problem min
s,θ
E(s;θ).

5.3.2.1 Cross-Validation

Cross-Validation (hereinafter abbreviated CV) is a general principle used to tune the hyperparameters in pa-

rameter estimation problems (Wahba, 1990). Broadly speaking, a CV procedure consists in minimizing a score

function that measures how well a set of estimated parameters will generalize to new data. This is achieved

by dividing the whole data set into several subsets. Each one of these subsets is then alternatively used as a

training set or as a test set to build the CV score function. The use of CV to select the hyperparameters for

spline parameter estimation has been introduced in (Wahba and Wold, 1975). It has been successfully applied

for deformable warp estimation from point correspondences in (Bartoli, 2008b). We now give a reminder of

two variants of CV which allow us to fix the notation used in this section: the Ordinary CV and the V -fold CV.

Ordinary CV (OCV). For a given set of hyperparameters θ, let s
(k)
θ be the warp parameters estimated from

the data with the k-th point correspondence left out. The OCV score, denoted COCV , is defined by:

COCV (θ) =
1

n

n∑

k=1

∥
∥
∥qk −W

(

pk; s
(k)
θ

)∥
∥
∥

2
. (5.26)

Tuning the hyperparameters using the OCV consists in minimizing COCV with respect to θ. This approach

has several drawbacks. First, computing COCV is prohibitive: evaluating COCV for a single θ with equa-

tion (5.26) requires to estimate each one of the n vectors {s(k)θ }nk=1. There exists some close approximations

of equation (5.26) resulting in a significant improvement in terms of computational time. However, these ap-

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 157

proximations are only usable in a least-squares framework for parameter estimation (see, for instance, (Bartoli,

2008a; Farenzena et al., 2008)). Second, the score COCV is not robust to false point correspondences. And last,

but not least, the OCV score is not reliable when there are not enough point correspondences (Wahba, 1990).

V -Fold Cross-Validation (V -fold CV). An alternative to the OCV score is the V -fold CV score. A complete

review of the V -fold CV is given in Brabanter et al. (2003). It consists in splitting the set of point correspon-

dences into V disjoint sets of nearly equal sizes (with V usually chosen as V = min(
√
n, 10)). Let s

[v]
θ be

the warp parameters obtained from the data with the v-th group left out and let mv be the number of point

correspondences in the v-th group. The V -fold CV score, denoted CV , is defined by:

CV (θ) =
V∑

v=1

mv

n

mv∑

k=1

1

mv

∥
∥
∥qk −W

(

pk; s
[v]
θ

)∥
∥
∥

2
. (5.27)

The V -fold CV is not robust to erroneous point correspondences. It can be made robust by replacing the

average
∑mv

k=1
1
mv

∥
∥
∥qk −W

(

pk; s
[v]
θ

)∥
∥
∥

2
in equation (5.27) with some robust measure such as the trimmed

mean (Brabanter et al., 2003). Besides, the V -fold CV score is not more reliable than the OCV score when

there are only a few point correspondences.

5.3.2.2 Other Approaches

Other approaches such as Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Mal-

low’s CP , Minimum Description Length (MDL) have been used to tune hyperparameters (see, for instance,

(Brabanter et al., 2003; Cetin and Erar, 2002)). Some robust versions also exist for these criteria ; for instance

a robust Mallow’s CP is developed in (Ronchetti and Staudte, 1994). However, these criteria have usually been

developed to choose one model among a finite set of given models and, as such, approaches based on CV are

better suited to tune continuous hyperparameters (Bartoli, 2008b).

5.3.3 Our Contribution: the Photometric Error Criterion

The common characteristic of the approaches reviewed in section 3.2.2 is that both the parameters and the

hyperparameters are estimated using exactly the same data set, i.e. the point correspondences. In this section,

we propose a new criterion to tune hyperparameters that makes use of all the available information: not only

the point correspondences but also the photometric information.

The principle of our approach consists in combining the two standard approaches to image registration:

• given a set of hyperparameters θ, the feature-based approach is used to determine the warp parameters sθ

from the point correspondences ;

• the cost function of the direct approach is used to assess the correctness of the hyperparameters θ: the

proper hyperparameters must be the ones minimizing the pixel-wise photometric discrepancy between

the target image and the warped source image.

In other words, we propose to use the point correspondences as the training set and the photometric information

as the test set. Dividing the data into a training set and a test set is a classical approach of statistical learning

(Hastie et al., 2001). Given a vector of hyperparameters θ and the corresponding warp parameters sθ (estimated

from the point correspondences), our criterion, denoted C⋆, is defined as:

C⋆(θ) =
1

|R|
∑

p∈R

∥
∥S(p)− T (W(p; sθ))

∥
∥2, (5.28)

158 Chapter 5. IMAGE REGISTRATION

where R is the region of interest and |R| its size. R can be defined as, for instance, a rectangle obtained by

cropping the domain of the source image. More advanced techniques such as the one proposed in the previous

section could also be used to deal with the region of interest. However, since the region of interest is not the

central point of this section, we prefer to keep it as simple as possible.

Note that the criterion of equation (5.28) is a slight variation of the cost function typically minimized in

direct image registration (Irani and Anandan, 1999; Szeliski, 2006) (see section 5.1.2.1). The only difference

is the normalizing factor 1
|R| . This factor allows one to compensate the undesirable effects due to the overlap

problem (see section 5.2). Using this factor in classical direct image registration would make difficult the

optimization process since it makes the cost function non-linear with respect to the warp parameters. However,

in the context now considered, the criterion of equation (5.28) is not intended to be minimized with respect to the

warp parameters. This is the very difference with direct image registration: here, the criterion of equation (5.28)

is considered as a function of the hyperparameters θ, not of the warp parameters s.

Robustness. When using photometric information, one should take care of the fact that there can be outliers

in the image colours caused, for instance, by occlusions or specularities. The criterion C⋆ can be made robust

to these outliers by replacing the squared Euclidean norm in equation (5.28) with a more robust measure such

as the trimmed mean. We thus define the robust photometric error criterion, denoted C′⋆, as:

C′⋆(θ) =
1

100−α
100 |R|

∑

p∈Rα

∥
∥S(p)− T (W(p; sθ))

∥
∥2, (5.29)

where Rα is the subset of R obtained by removing from R the α% of the pixels that produce the highest values

for ‖S(p)− T (W(p; sθ))‖2 (see section 3.1.2.3).

5.3.4 Experimental Results

5.3.4.1 Technical Details

The contribution we presented in this section is quite generic in the sense that it may be used in many different

setup. However, even though our contribution is generic, we use a particular combination of elements for the

experiments of this section.

Warp. We use the uniform cubic B-spline model of function for the warp (see section 2.3.2.3 and sec-

tion 2.3.2.5). This model is interesting since it is generic and may thus represent the transformations of a

deformable environment. Besides, this model includes several hyperparameters. The number of control points

is one of these hyperparameters (we note l this number in the sequel of the experiments).

Smoothing Term. In order to compute a smooth warp, we use the classical bending energy term as described

in section 5.1.2.1 (equation (5.11)). Using such a regularization scheme introduce another hyperparameter: the

regularization parameter, which we denote λ in the rest of the experiments.

M-estimator. In this section we use the Cauchy M-estimator defined by the following ρ function:

ρ(x; γ) = log

(

1 +
x2

γ2

)

, (5.30)

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 159

where γ ∈ R∗
+ is an hyperparameter that controls the scale of this M-estimator. More details on this M-

estimator may be found in section 3.1.2.2. In particular, it can easily be shown that the Cauchy M-estimator is

the negative likelihood with errors following a Cauchy/Lorentz distribution. The inaccuracies of the keypoints’

locations detected by SURF and SIFT tend to follow such a distribution. Besides, the probability density

function (PDF) of the Cauchy distribution has heavy tails that satisfactorily models the outliers, i.e. the false

point correspondences. We report in figure 5.18 an illustrative test showing that assuming a Cauchy distribution

is consistent with the kind of errors encountered in real cases. In this experiment, we use the source and the

target images of figure 5.17 for which the ground truth warp is known (manually determined). Figure 5.18

depicts an histogram of the errors between the location of the 1112 keypoints detected with SIFT in the target

image and their expected location (computed by applying the ground truth warp to the keypoints in the source

image). It shows that considering a Cauchy distribution is a reasonable choice. In particular, the fact that the

tails of the PDF of the Cauchy distribution are heavier than the ones of, for instance, the Gaussian PDF makes

the cost function of equation (5.23) robust to outliers.

Figure 5.18: Graphical comparison between the probability density function of the Cauchy distribution and the (normalized)

histogram of the errors between the expected keypoints in the target image and the keypoints automatically detected with SIFT.

Mind the scale of the abscissa axis.

Optimization of the Criteria. All the criteria used in the experiments (including the CV criteria and our

new criterion) are minimized using an exhaustive search approach. It consists in evaluating the criteria over a

fine grid in order to find the optimum. Although long to compute, this approach has the advantage of being

reliable. Besides, we generally optimize over only 2 or 3 hyperparameters, which makes the computational

time reasonable.

5.3.4.2 Synthetic Data

In this subsection, several experiments are done on synthetic data. Using such data is interesting since it allows

us to know precisely the ground truth warp that relates the source and the target images.

Synthetic Data Generation. A pair of images is generated from a texture image (randomly chosen in a stock

of 15 different images). A rectangular part of the texture image is used as the source image. The target image is

build by deforming another part of the texture image with a ground truth warpW⋆, as illustrated in figure 5.19.

The warpW⋆ is a B-spline with 5×5 control points determined randomly and such that the average deformation

magnitude is approximately 20 pixels. The sizes of the source and of the target images are 160 × 160 pixels

and 320 × 240 pixels respectively. A Gaussian noise with standard deviation equal to 5% of the maximal

intensity value is added to the pixels of both the source and the target images. A set P = {pi ↔ qi}ni=1

of point correspondences is built by randomly picking the points pi in the source image and computing their

160 Chapter 5. IMAGE REGISTRATION

correspondents qi in the target image with the warpW⋆. A Cauchy noise with scale parameter γ = 1 pixel is

added to the point correspondences.

Source image
(pattern)

Target image Texture imageTexture image

Figure 5.19: Illustration of the generation of synthetic data. First row: a pair of images (the source and the target images) are

generated from a texture image using a predetermined warp (used as the ground truth warp). Second row: point correspon-

dences are automatically extracted and matched from the generated images using standard approaches such as SIFT and

SURF.

Oracle. We call oracle the warp estimated from the point correspondences P which is as close as possible to

the ground truth warpW⋆. It is designed to be the best possible warp given i) the available data and ii) the warp

model. It is preferable to use the oracle instead of the ground truth warp to evaluate an estimated warp. Indeed,

en error between an estimated warp and the ground truth warp does not necessarily comes from a bad estimation

process (which is the object of our experiments in this paper): it can comes from the fact that the considered

warp model is simply not able to fit the ground truth warp (for example, even if the correct hyperparameters are

given, a homography will never fit a highly deformed warp). The oracle is defined as the warp induced by the

parameters and the hyperparameters (so,θo) estimated by solving the following problem:

(so,θo) = argmin
(s,θ)

∫∫

p∈ΩW⋆

‖W⋆(p)−W(p; s)‖ dp. (5.31)

Problem (5.31) is numerically solved using an exhaustive search approach.

5.3.4.3 Relative Geometric Error (RGE)

The RGE measures the discrepancy between an estimated warp and the oracle. Let θ• be the set of hyperparam-

eters that minimizes the criterion C•. Let s• be the warp parameters estimated from the point correspondences

with the hyperparameters θ•. The RGE is defined as:

∫∫

p∈ΩS

‖W(p; so)−W(p; s•)‖
‖W(p; so)‖

dp. (5.32)

Figure 5.20 compares the RGE obtained by tuning the M-estimator scale parameter γ and the smoothing

parameter λ with different approaches:

• our photometric criterion (Photo) and its robust versions with thresholds for the trimmed mean of 25%

(PhotoR25) and 50% (PhotoR50) ;

• the V -fold CV criterion (VFold) and its robust versions with thresholds for the trimmed mean of 20%

(VFoldR20) and 40% (VFoldR40).

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 161

The number of control points of the warp is set to 8×8. 100 point correspondences are used to estimate the

warp. The results reported in figure 5.20 are averaged over 100 trials (with different texture images, different

point correspondences, and different deformations).

We can observe in figure 5.20 that the smallest RGE are consistently obtained with our photometric criterion.

The difference between robust and non-robust versions of our criterion is not as significant as for the CV

criteria. This comes from the fact that in the synthetic data used for this experiment, there are outliers in the

point correspondences (thus affecting the non-robust CV scores) while the source and the target images are

outlier-free.

Photo

PhotoR25

PhotoR50
VFold

VFoldR20

VFoldR40
0%

5%

10%

15%

20%

35%

G
eo

m
et

ric
 e

rr
or

 re
la

tiv
e

to
 th

e
or

ac
le

Photo
Photo

PhotoR25

PhotoR50

0%

0.5%

1.5%

G
eo

m
et

ric
 e

rr
or

 re
la

tiv
e

to
 th

e
or

ac
le

Figure 5.20: Relative geometric errors for several criteria used to determine hyperparameters. Globally, the criteria we propose

(Photo, PhotoR25, and PhotoR50) give better results than the ones obtained with criteria relying on Cross-Validation (VFold,

VFoldR20, and VFoldR40). The red line is the median over the 100 trials. The limits of the blue box are the 25th and the 75th

percentiles. The black ‘whiskers’ cover approximately 99.3% of the experiment outcomes. The red crosses are the outcomes

considered as outliers.

5.3.4.4 Scale Parameter of the Cauchy’s M-estimator

Figure 5.21 shows the values determined with several criteria for the Cauchy’s M-estimator scale parameter γ.

In addition to the criteria used in the previous experiment, we also show the results obtained with the oracle.

The data used in this experiment are the same than the one used in the previous experiment. The point corre-

spondences were generated with errors following a Cauchy distribution with scale parameter equals to 1. As a

consequence, the criteria are expected to give the value 1 for the scale parameter of the Cauchy’s M-estimator.

Figure 5.21 shows that the proposed photometric criteria results in values for γ which are close to 1. We ob-

serve that the three approaches based on the basic V -fold CV also results in correct values. On the contrary, the

robust variants of the V -fold CV gives values farther away from 1 than the other approaches. The fact that the

value 1 is not exactly retrieved with our criteria is not really significant since this value is not precisely retrieved

with the oracle itself.

5.3.4.5 Noise in the Point Correspondences

In this experiment, we study the influence of the noise in the point correspondences. We use the same data than

in the experiments of section 5.3.4.3 except that there are no outliers in the images. The point correspondences

are perturbed using an additive Gaussian noise of standard deviation σ varying between 0 and 12 pixels. There-

fore, we only test the non-robust methods: VFold and Photo. These methods are used to automatically tune

the regularization parameter. Figure 5.22 shows the evolution of the RGE in function of the amount of noise

in the point correspondences. It shows that our approach Photo is much more robust to the noise than VFold.

162 Chapter 5. IMAGE REGISTRATION

Oracle
Photo

PhotoR25

PhotoR50
VFold

VFoldR20

VFoldR40

C
au

ch
y'

s
M

-e
st

im
at

or
 s

ca
le

 p
ar

am
et

er

0

0.5

1

1.5

2

2.5

Figure 5.21: Scale parameter of the Cauchy’s M-estimator retrieved using several criteria. The pink dashed line represents the

expected value for this hyperparameter. The green dashed line represents the value retrieved using the oracle. The use of the

criteria we proposed (Photo, PhotoR25, and PhotoR50) results in values close to the expected ones.

This comes from the fact that VFold entirely relies on the noisy point correspondences while our approach also

includes colour information.

Figure 5.22: Evolution of the relative geometric error in function of the (Gaussian) noise in the point correspondences. Our

approach, Photo, is more robust than the approach relying on the CV (VFold).

5.3.4.6 Real Data

The last experiments of this paper are conducted on real data. The source images are digital pictures. The target

images are obtained by first printing the source images and second picturing them with a standard camera.

Ground truth warps were determined manually by clicking several hundreds of point correspondences in the

images. Note that figure 5.17 shows an example of our approach applied to real data.

The cubist image Figure 5.23 shows the registration results obtained by automatically determining the hy-

perparameters with several criteria. In this experiment, three hyperparameters were considered: the smoothing

parameter λ, the M-estimator threshold γ, and the number of control points of the B-spline warp lx (the number

of control points along the x-axis and the y-axis were set to be equal). 314 point correspondences were automat-

ically determined using the SIFT detector and the descriptor matcher implemented in (Vedaldi and Fulkerson,

2008). Approximately 8% of the point correspondences were false matches. We can observe in figure 5.23 that

our photometric criterion is the one giving the best results. The standard V-Fold CV criterion is the one leading

to the worst results due to the presence of erroneous point correspondences. The robust V-Fold CV criterion

performs better than the non-robust one but is not as good as ours, particularly for the bottom right corner of

the image: this is due to a lack of point correspondences in this part of the image.

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 163

(a) Source image (b) Point correspondences

(c) Ground truth warp (d) Oracle

(e) VFold CV (f) VFold CV (threshold = 20%)

(g) Our criterion (h) Our criterion (threshold = 25%)

Figure 5.23: Image registered with 3 hyperparameters (γ, λ, and l) automatically determined with several criteria. The point

correspondences were obtained with SIFT. The thresholds indicated in (f) and (h) are the thresholds of the trimmed means (see

section 5.3.2 and section 5.3.3). In this case, the two variants of our criterion are the ones that lead to the best results.

164 Chapter 5. IMAGE REGISTRATION

We report in table 5.2 the RGE as defined in section 5.3.4.3 for the warps estimated in the ‘cubist image’

experiment.

Criterion RGE

V-Fold CV 1.852%

V-Fold CV (robust) 0.675%

Our criterion 0.190%

Our criterion (robust variant) 0.197%

Table 5.2: RGE for the experiment of figure 5.23.

‘Waterfall’ of Maurits Escher Figure 5.24 shows an experiment similar to the one conducted with the ‘cubist

image’. Nonetheless, there are some important differences. This time, the keypoints were extracted using the

SURF detector of (Bay et al., 2008) and approximately 12% of the 621 point correspondences were erroneous.

An artificial occlusion was added to the target image; we used an artificial occlusion in order to still be able

to determine the ground truth warp (which is done before the insertion of the occlusion). Besides, the M-

estimator scale parameter and the smoothing parameter were the only hyperparameters under study (the number

of control points of the warp was set to the one of the ground truth warp). As in the ‘cubist image’ case, the

hyperparameters chosen with our photometric criterion are better than the ones estimated with the criterion

relying on the V-Fold Cross-Validation. In both cases, the robust versions of the criteria perform better than

the non-robust ones. Note that the occlusion added to the target image influences the non-robust V-fold CV

criterion since it introduces supplementary false point correspondences.

5.3.5 Conclusion

We proposed a new criterion to automatically tune the hyperparameters in image registration problems. We

showed that our photometric criterion performs generally better than other approaches with similar goals such as

the Cross-Validation criteria. This was made possible by designing a criterion specifically adapted to the image

registration problem that combines the advantages of both the feature-based and the direct approaches to image

registration. Our criterion was successfully experimented in a particular but challenging setup: deformable

B-spline warps, selection of an M-estimator threshold, presence of outliers and occlusions, etc. However, the

proposed criterion is not limited to this setup: it is generic enough to be applied in other image registration

problems with different constraints, different warps, and, thus, different hyperparameters.

5.3 PIXEL-BASED HYPERPARAMETER SELECTION FOR FEATURE-BASED IMAGE REGISTRATION 165

(b) Ground truth warp (c) Oracle

(d) VFold CV (e) VFold CV (threshold = 20%)

(f) Our criterion (g) Our criterion (threshold = 25%)

(a) Point correspondences

Figure 5.24: Image registered with 2 hyperparameters (γ, λ) automatically determined with several criteria. The point corre-

spondences were obtained with SURF. The thresholds indicated in (f) and (h) are the thresholds of the trimmed means (see

section 5.3.2 and section 5.3.3). Globally, the robust variants of the VFold CV criterion and of our criterion lead to acceptable

results. The non-robust VFold CV criterion is greatly influenced by the presence of outliers in the point correspondences. The

non-robust variant of our criterion is slightly more influenced by the occlusion than the robust variant.

166 Chapter 5. IMAGE REGISTRATION

167

Chapter 6
NURBS Warps

Standard Free-Form Deformations (FFD) built upon

tensor-product B-Splines have been proved useful to

model the warp between two views of a deformable sur-

face. In this chapter, we show that the standard FFD is

the affine projection of a threedimensional tensor-product

B-Spline surface. We construct a new tensor-product

warp relying on Non-Uniform Cubic B-Spline: the NURBS-

Warp. We show that this new warp is an extension of

the standard FFD that describes the perspective camera

model. The parameters of this new deformation model

may be estimated using one of the techniques proposed

in, for instance, section 5. Our NURBS-Warp is compared

to the standard FFD warp for both synthetic and real im-

ages. These experiments show that our NURBS-Warp

gives better results than the other warps, especially when

the perspective effects are important.

The work presented in this chapter has been first pub-

lished in (Brunet et al., 2009b).

168 Chapter 6. NURBS WARPS

6.1 Introduction

In this chapter, we bring several contributions. We first demonstrate in section 6.2 that the warps based on

tensor-product B-splines (hereinafter abbreviated BS-Warp) corresponds to affine imaging condition, in the

sense that it models the affine projection of some 3D surface. We then propose our most important contribution

in section 6.3: a novel parametric warp we call NURBS-Warp, that extends the classical BS-Warp to perspective

projection. This warp has a simple analytical form: it is obtained as the two-way tensor-product of bivalued

Non-Uniform Rational B-Splines (NURBS). Finally, we give in section 6.4 algorithms for the feature-based

estimation of our NURBS-Warp. More precisely, we consider that a set {qk ↔ q′
k}k=1,...,r of point correspon-

dences between the two images is known, and show how the parameters that minimize the classical transfer

error can be found, by solving:

min
x

r∑

k=1

d2
(
q′
k,W(qk;x)

)
, (6.1)

whereW represents the warp and d2(a,b) is the squared euclidean distance between the points a and b. We

finally report experimental results in section 6.5 and conclude this section.

6.2 Affine Interpretation of the BS-Warps

Notation. In this chapter, we denoteWB the BS-Warp. As a reminder of section 2.3.2, a BS-Warp is defined

as:

WB(q;x) =

m∑

i=1

n∑

j=1

pijNi(x)Nj(y), (6.2)

where the functions Ni : R → R are the B-Spline basis functions and the pij = (pxij , p
y
ij)

T are the control

points (grouped in the parameter vector x ∈ R2mn). The scalars m and n are the number of control points

along the x and y directions respectively. Note that we consider as coincident the knot sequences used to define

the B-Spline basis functions.

Affine interpretation. If we consider that the observed surface is modelled by a threedimensional tensor-

product B-Spline, the BS-Warp corresponds to the transformation between the two images under affine imaging

conditions (see figure 6.1 for an illustration).

Figure 6.1: A BS-Warp can be seen as the result of a threedimensional B-Spline surface projected under affine conditions.

LetR : R2 → R3 be the 2D-3D map between the first image and the threedimensional surface:

Q = R(q;x) =
m∑

i=1

n∑

j=1

p̄i,jNi(x)Nj(y), (6.3)

6.2 AFFINE INTERPRETATION OF THE BS-WARPS 169

with p̄i,j = (p̄xi,j p̄
y
i,j p̄

z
i,j)

T ∈ R3 the 3D control points of the surface. LetA : R3 → R2 be the affine projection

of the surface into the second image:

A(Q) = AQ, (6.4)

with A the matrix which models the affine projection, assuming that the 3D surface is expressed within the

coordinate frame of the second camera:

A =

(

ax 0 0

0 ay 0

)

. (6.5)

Given these notations, the warped point q′ can be written A(R(q)) which, after expansion, gives:

q′ =
m∑

i=1

n∑

j=1

(

p̄xi,j
p̄yi,j

)

Ni(x)Nj(y). (6.6)

Equation (6.6) matches the definition of equation (6.2) of a BS-Warp.

BS-Warps are not suited for perspective imaging conditions. As we just demonstrated, BS-Warps are

obtained under affine imaging conditions. However, this does not prove that they are not suited for perspective

imaging conditions. In this paragraph, we experimentally illustrate that BS-Warps are indeed not suited for

perspective imaging conditions. This comes from the fact that the division appearing in a perspective projection

is not present in the BS-Warp model.

The bad behavior of the BS-Warp in the presence of perspective effects is illustrated in figure 6.2. In this

experiment, we simulate a set of point correspondences by transforming a regular grid with an homography

parametrized by a scalar a that controls the amount of perspective effect. The 3× 3 matrix of this homography,

Ha, is given by:

Ha ∝
1

a

(a+ 1)2/4 0 −(a2 − 1)/4

0 a(a+ 1)/2 0

−(a2 − 1)/4 0 (a+ 1)2/4

 , (6.7)

where∝ indicates equality up to scale. The larger |a− 1|, the more important the perspective effect. Figure 6.2

c clearly shows that the transformation can be correctly modelled by a BS-Warp only when a = 1, i.e. when the

perspective effect is barely existant. Figure 6.2 d shows that the number of control points of a BS-Warp must

be significantly large in order to correctly model a perspective effect.

−1 0 1

−1

0

1

-1 0 1

1

0

-1

-a

a

1 3 5 7 9
a (amount of perspective)

T
ra

ns
fe

r
er

ro
r

0

0.05

0.1

0.15

0.2

0.25

16 25 36 49 64 81
Number of control points

T
ra

ns
fe

r
er

ro
r

0

0.05

0.1

0.15

(a) (b) (c) (d)

Figure 6.2: Bad behavior of the BS-Warp in the presence of perspective effects. (a) Data points on a regular grid (first image).

(b) Transformed points simulating a perspective effect with an homography (second image). (c) Influence of the perspective

effect on a BS-Warp with 16 control points. (d) The perspective effect (a = 5
2

) can be modeled with a BS-Warp but it requires

a large amount of control points.

170 Chapter 6. NURBS WARPS

6.3 NURBS-Warps

This section introduces a new warp, the NURBS-Warp, which is built upon tensor-product Non-Uniform Cu-

bic B-Splines. We show that the NURBS-Warp naturally appears when replacing the affine projection by a

perspective one in the image formation model of the previous section. As our experimental results will show,

the NURBS-Warp performs better in the presence of perspective effects. All the necessary details about the

NURBS model have been presented in section 2.3.3.

Perspective interpretation. Following the same reasoning than for the BS-Warp in the previous section, we

show that the NURBS-Warp corresponds to perspective imaging conditions. This is illustrated in figure 6.3.

Figure 6.3: A NURBS-Warp can be seen as the result of a threedimensional B-Spline surface projected under perspective

conditions.

Let P be the perspective projection:

P(Q) = ψ(KQ), (6.8)

with K the matrix of intrinsic parameters for the second camera. ψ is the homogeneous to affine coordinates

function, i.e. ψ(q̌) = q where q̌ are the homogeneous coordinates of q (q̌T = (qT 1)). We assume that the

image coordinates are chosen such that the origin coincides with the principal point:

K =

fx 0 0

0 fy 0

0 0 1

 . (6.9)

Replacing Q by its expression of equation (6.3) in equation (6.8) leads to:

P(Q) = P(R(q)) = 1
∑m

i=1

∑n
j=1 p̄

z
i,jNi(x)Nj(y)

(

fx
∑m

i=1

∑n
j=1 p̄

x
i,jNi(x)Nj(y)

fy
∑m

i=1

∑n
j=1 p̄

y
i,jNi(x)Nj(y)

)

. (6.10)

Defining wi,j = p̄zi,j , p
x
i,j = fx

p̄xi,j
wi,j

and pyi,j = fy
p̄yi,j
wi,j

, equation (6.10) is the very definition of a tensor-product

NURBS with control points pT

i,j = (pxi,j , p
y
i,j) and weights wi,j (see section 2.3.3). We denote WN this new

warp and call it a NURBS-Warp:

WN (q;x) =

∑m
i=1

∑n
j=1 pi,jwi,jNi(x)Nj(y)

∑m
i=1

∑n
j=1wi,jNi(x)Nj(y)

. (6.11)

Here, the warp parameters, i.e. the control points and the weights, are grouped into a vector x ∈ R3mn.

Using the NURBS-Warp in the setup used for the experiment of figure 6.2 leads to a transfer error consis-

tently smaller than 10−5 pixels.

6.4 PARAMETER ESTIMATION 171

Homogeneous NURBS-Warp. The NURBS-Warp defined by equation (6.11) can be expressed with homo-

geneous coordinates. We note W̌N the NURBS-Warp in homogeneous coordinates:

W̌N (q;x) ∝

∑m
i=1

∑n
j=1 p

x
i,jwi,jNi(x)Nj(y)∑m

i=1

∑n
j=1 wi,jNi(x)Nj(y)∑m

i=1

∑n
j=1 p

y
i,jwi,jNi(x)Nj(y)

∑m
i=1

∑n
j=1 wi,jNi(x)Nj(y)

1

∝

m∑

i=1

n∑

j=1

pxi,jwi,j

pyi,jwi,j

wi,j

Ni(x)Nj(y). (6.12)

We observe that in the homogeneous version of equation (6.12), our NURBS-Warp does a linear combination

of control points in homogeneous coordinates, as opposed to the classical BS-Warp of equation (6.2) that does a

linear combination of control points in affine coordinates. This is what makes our NURBS-Warp able to model

perspective projection, thanks to the division ‘hidden’ in the homogeneous coordinates.

6.4 Parameter Estimation

In this section, we show how the BS-Warp and the NURBS-Warp parameters can be estimated. Here, we

consider the feature-based approach for estimating the warp parameters. It has the advantage of being one of

the most simple approach to estimate the parameters. We can thus concentrate on the main topic of this chapter,

i.e. the representational power of the warps. As it was explained in section 5.1, this feature-based approach to

image registration amounts to solve the following minimization problem:

min
x

r∑

k=1

d2
(
q′
k,W(qk;x)

)
. (6.13)

The main difficulty here is that problem (6.13) is not linear when using the NURBS-warps.

6.4.1 The BS-Warp

The dependency of the BS-Warp to its parameters is linear. As a consequence, the optimization problem (6.13)

for a BS-Warp simply reduces to an ordinary linear least-squares minimization problem. The details for solving

such a problem have already been detailed in, for instance, section 5.3.

6.4.2 The NURBS-Warp

Contrarily to the BS-Warp, the dependency of the NURBS-Warp to its parameters is not linear. Problem (6.13)

thus leads one to a non-linear least-squares optimization problem. Note that this remark would still be true for

other estimation techniques such as the direct approach to image registration. It is a well-known fact that this

kind of problem can be efficiently solved using an iterative algorithm such as Levenberg-Marquardt. Such an

algorithm needs an initial solution (see section 2.2.2.7). We propose three approaches to compute an initial set

of parameters (which are further detailed in the sequel of this section):

• First approach: Act as if the images were taken under affine imaging conditions.

• Second approach: Act as if the warp relating the two images was an homography.

• Third approach: Use an algebraic approximation to the transfer error function.

Since all of these three approaches are relatively cheap to compute, it is possible to test the three of them and

choose as initial parameters those that give the smallest transfer error.

172 Chapter 6. NURBS WARPS

First approach (affine initialization). An initial solution for the NURBS-Warp estimation problem can be

computed by setting all the weights to 1. By doing so, the equation defining a NURBS-warp reduces to the

expression of a simple BS-Warp. An initial set of parameters can thus be computed using ordinary least-squares

minimization. Since the BS-Warp corresponds to affine imaging conditions, this approach is expected to give

good results when the effects of perspective are limited.

Second approach (homographic warp). Even if the homographic warp is not suited to deformable environ-

ments, it can be a good approximation (particularly if the surface bending is not important). We denote WH

the homographic warp. It is defined by:

WH(q;x) =
1

p7x+ p8y + 1

(

p1x+ p2y + p3

p4x+ p5y + p6

)

, (6.14)

with xT = (p1 . . . p8). Minimizing the transfer error of equation (6.13) with the homographic warpWH can

be achieved iteratively using, for instance, the Levenberg-Marquardt algorithm (and by taking the identity warp

or the algebraic solution as an initialization). A complete review of homographic warp estimation can be found

in (Hartley and Zisserman, 2003a).

Third approach (algebraic approximation). The third and last approach we propose to initialize the opti-

mization process consists in minimizing an algebraic approximation to the transfer error:

min
x

r∑

k=1

d2a
(
q′
k, W̌N (qk;x)

)
, (6.15)

with d2a (q
′, q̌) = ‖S(q̃′ × q̌)‖2 an algebraic distance between the points1 q and q′. The operator S removes

the last element of a 3-vector. q̃′ are the scaled homogeneous coordinates of q′ (i.e. q̃′T = (q′T 1)). If we

make the following variable change in equation (6.12) of the homogeneous NURBS-Warp: ai,j = pxi,jwi,j and

bi,j = pyi,jwi,j then it is straightforward to see that the algebraic distance is the squared euclidean norm of

an expression linear with respect to the parameters ai,j , bi,j and wi,j . Replacing the algebraic distance by its

expression in the initial optimization problem of equation (6.15) leads to homogeneous linear least-squares.

This problem can be solved using the singular value decomposition presented in section 2.2.2.10.

6.5 Experiments

6.5.1 Simulated Data

Simulation setup. We generate two images by simulating two cameras looking at a surface with different

deformations between the views. The surface is generated as a linear combination of two objects: a simple

plane and a more deformed surface (see figure 6.4). A single parameter, α, controls the amount of surface

bending. Points on the surface are projected on the images and corrupted with an additive gaussian noise. The

perspective effect is controlled by varying the distance between the scene and the camera (the focal length, f ,

is adjusted so that the apparent size of the imaged surface remains approximately the same). The influence of

three quantities are tested independently:

• the amount of noise: controlled by the standard deviation σ in pixels;

1This algebraic distance is valid only if the point coordinates are normalized according to (Hartley and Zisserman, 2003a). We did

not introduced it in our equations for the sake of clarity.

6.5 EXPERIMENTS 173

• the amount of bending: controlled by the previously described parameter α;

• the amount of perspective: controlled by the scene to camera distance d, in pixels.

α = 1 α = 2
3 α = 1

3 α = 0

Figure 6.4: The simulated threedimensional surfaces used in our experiments are obtained as linear combinations of a plane

(α = 1) and of a more distorted surface (α = 0).

The default simulation parameters are r = 192 point correspondences, σ = 1 pixel, α = 1
2 , d = 800

pixels, f = 400 pixels and n control points. These parameters yield mild perspective effects. For each set of

parameters, the generated surface is also rotated around its center. The reported results are the average of the

mean transfer error over 100 surfaces which have different rotations and corruptions of the projected points.

For each varied parameter, three plots report the results for different numbers of control points (n = 16, n = 25

and n = 36). Four curves are reported on each plot. They correspond to the homographic warp, the initial

estimate of the NURBS-Warp using the algebraic distance, the optimal BS-Warp and the final NURBS-Warp.

Two general observations can be made about those results. First, the experiments show that the NURBS-

Warp always outperforms the three other approaches. This comes from the fact that it is designed, by construc-

tion, to model more complex deformations between images2. Second, the following results show that the larger

the number of control points, the lower the transfer error.

Influence of noise. Figure 6.5 shows the influence of the amount of noise on the estimated warps. We can

see that the influence of this factor is relatively limited and, more importantly, that this influence is similar for

all the four warps.

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

10

12

Standard deviation (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp

Algebraic. Init.

BS−Warps

NURBS−Warps

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

10

12

Standard deviation (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp

Algebraic. Init.

BS−Warps

NURBS−Warps

0 0.4 0.8 1.2 1.6 2
0

2

4

6

8

10

12

Standard deviation (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp

Algebraic. Init.

BS−Warps

NURBS−Warps

n = 16 control points n = 25 control points n = 36 control points

Figure 6.5: The influence of the amount of noise.

Influence of bending. The influence of the amount of bending is studied by varying the parameter α. The

results are reported in figure 6.6. This experiment shows, as expected, that the homographic warp is the one

which is the most influenced by the deformations of the observed surface. It comes from the fact that the

homographic warp inherently does not model deformable environments.

2Besides, it seems natural that the NURBS-Warp estimate is better than the other approaches since its parameter estimation starts

from an initial solution which corresponds to the parameters of the best estimate among the three other approaches.

174 Chapter 6. NURBS WARPS

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Amount of bending (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Amount of bending (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

0 0.2 0.4 0.6 0.8 1
0

5

10

15

20

Amount of bending (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

n = 16 control points n = 25 control points n = 36 control points

Figure 6.6: The influence of the amount of bending.

Influence of perspective (1). The influence of the perspective effect is studied by varying the scene to camera

distance: the larger the distance, the more affine the imaging conditions. The results are reported in figure 6.7.

This experiment truly reveals the full power of the proposed NURBS-Warp. Indeed, for the lowest number

of control points (n = 16), we see that with an important perspective effect (d = 270), the NURBS-Warp is

more than twice as good as the BS-Warp. Two main reasons explain this result. First, the NURBS-Warp has

been designed to model perspective effects. Second, the behavior of the BS-Warp is better for affine imaging

conditions. Figure 6.7 also shows that the BS-Warp can correctly model the deformations but it requires a large

amount of control points.

270 400 800 1800 4000
0

5

10

15

20

25

30

Scene to camera distance (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

270 400 800 1800 4000
0

5

10

15

20

25

30

Scene to camera distance (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

270 400 800 1800 4000
0

5

10

15

20

25

30

Scene to camera distance (pixels)

T
ra

ns
fe

r
E

rr
or

 (
pi

xe
ls

)

Homog. Warp
Algebraic. Init.
BS−Warps
NURBS−Warps

n = 16 control points n = 25 control points n = 36 control points

Figure 6.7: The influence of the amount of perspective.

Influence of perspective (2). In the previous experiment the warps had to cope simultaneously with perspec-

tive effects and large surface deformations. As a consequence, it is difficult to see the benefit brought by our

NURBS-Warp. We thus present the influence of perspective with less complex deformations. We use the same

experimental setup except for the generated surface which is now obtained as the linear combination of a plane

and a half-cylinder (see figure 6.8 a). Figure 6.8 c shows that the NURBS-Warp brings a real benefit compared

to the BS-Warp when the perspective effect are important: for example, we see that compared to the BS-Warp,

the NURBS-Warp transfer error is over 3 times lower for a camera to scene distance of 270 pixels.

From the last two experiments, we can say that the proposed NURBS-Warp is well suited for large perspec-

tive effects. However, when the surface deformations are significant, both the NURBS-Warp and the BS-Warp

require a lot of control points. Since it increases the number of degree of freedom, the BS-Warp can also cope

with perspective effects.

6.6 CONCLUSION 175

270 400 800 1800 4000
0

0.5

1

1.5

2

2.5

3

3.5

4

Scene to camera distance (pixels)

R
at

io
 o

f t
he

 tr
an

sf
er

 e
rr

or
s

(a) (b) (c)

Figure 6.8: (a) Simple deformations are obtained using a linear combination of a plane and a half-cylinder. (b) The NURBS-

Warp (black visualization grid) models better the perpective effect than the BS-Warp (dashed grid). The black circles represent

the ground truth location of the vertices. (c) The BS-Warp transfer error divided by the one of the NURBS-Warp.

6.5.2 Real Images

Figure 6.9 and figure 6.10 show examples of warps estimated for a rigid and a deformable scene respectively.

The warps are estimated from 130 point correspondences that we entered manually (represented by the small

circles). We set the number of control points to 16 for both the BS-Warp and the NURBS-Warp. The estimated

warps are represented by a visualization grid. This grid is shown in its rest position in the first image. It is

then transferred into the second image using the estimated warps. The conclusion of this experiment is that

the NURBS-Warp is the one that gives the best results. This is especially true when perspective effects and

surface deformations are combined. In particular, we can see in figure 6.10 that the NURBS-Warp is the only

warp able to retrieve realistic surface deformations. Note that the transfer errors reported in figure 6.9 and

figure 6.10 may seem important. These high values come from the fact that the images have a quite high

resolution (approximately 3072× 2304 pixels).

First image TE=9.2 TE=7.8 TE=14.5

BS-Warp NURBS-Warp Homography

Figure 6.9: Warps estimated for a rigid surface (TE: Transfer Error in pixels).

6.6 Conclusion

We introduced a new parametric warp we called NURBS-Warp. It was derived by analyzing the classical BS-

Warp, that we showed is based on the two-way tensor product of bivariate B-Splines. As a first contribution,

we showed that the BS-Warp is intrinsically affine: it does not model the effect of perspective projection. Our

NURBS-Warp, based on the tensor product of NURBS, is an extension of the BS-Warp. It models perspective

projection, and thus copes with more complex deformations with less control points, as our experimental re-

sults show. An estimation procedure from point correspondences was given. It allowed us to demonstrate the

representational power of our warp compared to the BS-Warp, and against various factors such as noise, surface

176 Chapter 6. NURBS WARPS

First image TE=21.2 TE=12.6 TE=52.3

BS-Warp NURBS-Warp Homography

Figure 6.10: Warps estimated for a deformable scene (TE: Transfer Error in pixels).

shape and number of control points. However, it might be interesting for future work to study how classical

robust and pixel-based methods can be applied to our NURBS-Warp.

177

Chapter 7
Monocular Template-based Reconstruction of

Smooth and Inextensible Surfaces

In this chapter, we deal with another problem of im-

portance in computer vision: the reconstruction of a de-

forming surface from a monocular sequence of images.

Our contribution is a new algorithm that works under the

assumption that the deformable surface is inextensible.

This problem may be seen as a natural continuation of the

aspects previously treated in this document. Indeed, as

we will show, the approach we use for reconstructing de-

formable surfaces is again formulated as a parameter esti-

mation problem. Besides, given the considered approach,

the reconstruction of deformable surfaces requires one to

first register the current image with some template image.

Our contributions related to this topic from section 5 and

section 6 may thus be used here. The work presented in

this chapter has been published in (Brunet et al., 2010e).

178 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

7.1 Introduction

Monocular surface reconstruction of deformable objects is a challenging problem which has known renewed

interest during the past few years. This problem is fundamentally ill-posed because of the depth ambiguities;

there are virtually an infinite number of 3D surfaces that have exactly the same projection. It is thus necessary

to use additional constraints ensuring the consistency of the reconstructed surface.

In this chapter, we present two algorithms for monocular reconstruction of deformable and inextensible sur-

faces under some general assumptions. First, we consider the template-based case. Reconstruction is achieved

from point correspondences between an input image and a template image showing a flat reference shape from

a fronto-parallel point of view. Second, we suppose the intrinsic parameters of the camera to be known. Third,

we assume that the camera is a perspective camera. These are common assumptions (Perriollat et al., 2010;

Salzmann et al., 2009; Shen et al., 2010).

Over the years, different types of constraints have been proposed to disambiguate the problem of monoc-

ular reconstruction of deformable surfaces. They can be divided into two main categories: the statistical and

the physical constraints. For instance, the methods relying on the low-rank factorization paradigm (Bartoli

et al., 2008; Brand, 2005; Bregler et al., 2000; Del Bue, 2008; Olsen and Bartoli, 2008; Torresani et al., 2008;

Xiao et al., 2006) can be classified as statistical approaches. Learning approaches such as (Gay-Bellile et al.,

2006; Salzmann et al., 2007, 2008b, 2009) also belong to the statistical approaches. Work such as (Salzmann

et al., 2009), where the reconstructed surface is represented as a linear combination of inextensible deformation

modes, is also a statistical approach. Physical constraints include spatial and temporal priors on the surface to

reconstruct (Gumerov et al., 2004; Prasad et al., 2006). Statistical and physical priors can be combined (Bartoli

et al., 2008; Del Bue, 2008). A physical prior of particular interest is the hypothesis of having an inextensible

surface (Perriollat et al., 2010; Salzmann et al., 2008a, 2009; Shen et al., 2010). In this chapter, we consider

this type of surface. This hypothesis means that the geodesics on the surface may not change their length across

time. However, computing geodesics is generally hard to achieve and it is even more difficult to incorporate

such constraints in a reconstruction algorithm. There exist several approaches to approximate this type of con-

straint. For instance, if the points are sufficiently close together, the geodesic between two 3D points on the

surface can be approximated by the Euclidean distance (Shen et al., 2009). An efficient approximation consists

in saying that the geodesic distance between two points is an upper bound to the Euclidean distance (Perriollat

et al., 2010; Salzmann et al., 2008a).

Algorithms for monocular reconstruction of deformable surfaces can also be categorized according to the

type of surface model (or representation) they use. The point-wise methods utilize a sparse representation of the

3D surface, i.e. they only retrieve the 3D positions of the data points (Perriollat et al., 2010). Other methods use

more complex surface models such as triangular meshes (Salzmann et al., 2008a, 2009) or smooth surfaces such

as Thin-Plate Splines (Bartoli, 2008a; Perriollat et al., 2010). In this latter case, the 3D surface is represented as

a parametric 2D-3D map between the template image space and the 3D space. Smooth surfaces are generally

obtained by fitting a parametric model to a sparse set of reconstructed 3D points: the smooth surface is not

actually used in the 3D reconstruction process. In this chapter, we propose an algorithm that directly estimate

a smooth 3D surface based on Free-Form Deformations (Rueckert et al., 1999). Having an inextensible surface

means that the surface must be everywhere a local isometry. This induces conditions on the Jacobian matrix

of the 2D-3D map. We show that these conditions can be integrated in a non-linear least-squares minimization

problem along with some other constraints that force the consistency between the reconstructed surface and

the point correspondences. Such a problem can be solved using an iterative optimization procedure such as

Levenberg-Marquardt that we initialize using a point-wise reconstruction algorithm. Our approach is highly

7.2 RELATED WORK ON INEXTENSIBLE SURFACE RECONSTRUCTION 179

effective in the sense that it outperforms previous approaches in term of accuracy of the reconstructed surface

and in terms of inextensibility.

Another important aspect in monocular reconstruction of deformable surfaces is the way noise is handled.

It can be accounted for in the template image (Perriollat et al., 2010) or in the input image (Salzmann et al.,

2009). There exist different approaches for handling the noise. For instance, one can minimize a reprojection

error, i.e. the distance between the data points of the input image and the projection of the reconstructed 3D

points. It is also possible to hypothesize maximal inaccuracies in the data points. We propose a point-wise

approach that accounts for noise in both the template and the input images. This approach is formulated as a

second-order cone program (SOCP) (Boyd and Vandenberghe, 2004).

Notation Description

P Matrix of the intrinsic parameters of the camera (P ∈ R3×3)

(The camera is assumed to be at the coordinate origin, so the matrix P

may be assumed to be square and invertible.)

pT

k kth row of the matrix P

nc Number of point correspondences

qi ith point in the template image

q′
i ith point in the input image; i ∈ {1, . . . , nc}

q̄i Point qi in homogeneous coordinates

ui Sightline corresponding to the point q′
i (ui = (P−1q̄′

i)/‖P−1q̄′
i‖)

µi Depth of the point Qi

Qi Reconstructed 3D point i
dij Euclidean distance between points i and j (dij = ‖qi − qj‖)
x̂ True value of x (for x = q′

i,qi,Qi,ui, µi, dij)

Table 7.1: Summary of the notation used in this chapter.

7.2 Related Work on Inextensible Surface Reconstruction

A popular assumption made in deformable surface reconstruction is to consider that the surface to reconstruct

is inextensible (Perriollat et al., 2010; Salzmann et al., 2008a, 2009; Shen et al., 2010). This assumption is

reasonable for many types of material such as paper and some types of fabrics. Having an inextensible surface

means that the surface is an isometric deformation of the reference shape. Another way of putting it is to say

that the length of the geodesics between pairs of points remains unchanged when the surface deforms. An exact

transcription of this principle is difficult to integrate in a reconstruction algorithm. Indeed, while it is trivial to

compute the geodesic in a flat reference shape, it is quite difficult to do it for a bent surface (especially when

the surface is represented as a sparse set of points or a triangular mesh). Many approximations have thus been

proposed.

The first type of approximation consists in saying that if the surface does not deform too much then the Eu-

clidean distance is a good approximation to the geodesic distance. Such an approach has been used for instance

in (Salzmann et al., 2007, 2008a; Shen et al., 2010; Zhu et al., 2009). Note that these types of constraints are

usually set in a soft way. For a given set of point pairs on the surface, the Euclidean distance should not diverge

too much from the geodesic distances. This approximation is better when there are a large number of points.

Depending on the surface model it is not always possible to vary the number of points.

Although the Euclidean approximation can work well in some cases, this approximation gives poor results

when creases appear in the 3D surface. In this case, the Euclidean distance between two points on the surface

can shrink, as illustrated in figure 7.1. The ‘upper bound approach’ is a now classical approach (Perriollat

180 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

Figure 7.1: Inextensible object deformation. The Euclidean distance between two points is necessarily less than or equal to

the length of the geodesic that links those two points (this length is easily computable if we have a template image representing

the flat reference surface from a fronto-parallel point of view).

et al., 2010; Salzmann et al., 2009) which consists in noticing that even if the Euclidean distance between two

points can shrink it can never be greater than the length of the corresponding geodesic. In other words, the

inextensibility constraint ‖Qi − Qj‖ ≤ dij must be satisfied for any pair of points (Qi,Qj) lying on the

surface. The second principle of such algorithms is to say that a 3D point Qi must lie on the sightline ui, i.e.

Qi = µiui. These two constraints are not sufficient to reconstruct the surface. Indeed, nothing prevents the

reconstructed surface from shrinking towards the optical centre of the camera. This problem is ‘solved’ using

a heuristic that has been proven to be very effective in practice. It consists in considering a perspective camera

and in maximizing the depth of the reconstructed 3D points.

These ideas have been implemented in different manners. For instance, (Perriollat et al., 2010) proposes

a dedicated algorithm that enforces the inextensibility constraints. This algorithm accounts for noise only in

the template image (by simply increasing a little bit the geodesic distances in the template, i.e. by replacing

dij with dij + εT where εT is the maximal inaccuracy of the points in the template image). Another sort of

implementation is given by (Salzmann et al., 2008a, 2009). In these papers, a convex cost function combining

the depth of the reconstructed points and the negative of the reprojection error is maximized while enforcing the

inequality constraints arising from the surface inextensibility. The resulting formulation can be easily turned

into an SOCP problem. A similar approach is explored in (Shen et al., 2010). These last two methods account

for noise in the input image. The approach of (Perriollat et al., 2010) is a point-wise method. The approaches of

(Salzmann et al., 2008a, 2009; Shen et al., 2010) use a triangular mesh as surface model, and the inextensibility

constraints are applied to the vertices of the mesh.

7.3 Convex Formulation of the Upper Bound Approach with Noise in all Im-

ages

In this section, we propose a convex formulation of the principles sketched in section 7.2 that, compared to

(Perriollat et al., 2010), accounts for noise in both the template and the input images. We can express this

in terms of image-plane measurements. As in (Salzmann et al., 2008a, 2009), our approach is formulated as

an SOCP problem. However, contrary to (Salzmann et al., 2008a, 2009), our approach is a point-wise method

that does not require us to tune the relative influence of minimizing the reprojection error and maximizing the

depths.

7.3.1 Noise in the Template Only

Let us first remark that the basic principles explained in section 7.2 can be formulated as SOCP problems. In

this first formulation, the noise is only accounted for in the template image. The inextensibility constraint

7.4 SMOOTH AND INEXTENSIBLE SURFACE RECONSTRUCTION 181

‖Qi −Qj‖ ≤ dij + εT can be written:

‖µiui − µjuj‖ ≤ dij + εT . (7.1)

Including the maximization of the depths, we obtain this SOCP problem:

max
µ

nc∑

i=1

µi

subject to ‖µiui − µjuj‖ ≤ dij + εT ∀(i, j) ∈ E

µi ≥ 0 i ∈ {1, . . . , nc}

(7.2)

where µT =
(

µ1 . . . µnc

)

, and E is a set of pairs of points to which the inextensibility constraints are

applied.

7.3.2 Noise in Both the Template and the Input Images

Let us now suppose that the inaccuracies are expressed in terms of image-plane measurements. Suppose that

points are measured in the image with a maximum error of εI , i.e.

‖q̂′
i − q′

i‖ ≤ εI , ∀i ∈ {1, . . . , nc}. (7.3)

Since we are searching for the true 3D position of the point Qi, we say that:

q̂′
i =

1

pT
3Qi

(

pT
1Qi

pT
2Qi

)

. (7.4)

Equation (7.3) can thus be rewritten:

∥
∥
∥
∥
∥

1

pT
3Qi

(

pT
1Qi

pT
2Qi

)

− q′
i

∥
∥
∥
∥
∥
≤ εI . (7.5)

We finally add the inextensibility constraints and the maximization of the depths (which are given by pT
3Qi)

and we obtain the following SOCP problem:

max
Q

pT

3

n∑

i=1

Qi

subject to

∥
∥
∥
∥
∥

[

pT
1

pT
2

]

Qi − q′
ip

T

3Qi

∥
∥
∥
∥
∥
≤ εI pT

3Qi ∀i ∈ {1, . . . , nc}

‖Qi −Qj‖ ≤ dij ∀(i, j) ∈ E

pT

3Qi ≥ 0 ∀i ∈ {1, . . . , nc}

(7.6)

where Q is the concatenation of the 3D points Qi, for i ∈ {1, . . . , nc}.

7.4 Smooth and Inextensible Surface Reconstruction

Although the strategem of maximizing the sum of depths
∑nc

i=1 µi described in the previous section gives

reasonable results, it is merely a heuristic, not based on any valid principle related to surface properties. We

182 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

therefore consider next a new formulation based on the principle of surface inextensibility.

Let the surface be modelled as a function W : R2 → R3, mapping the planar template to 3-dimensional

space. The inextensibility constraint is equivalent to saying that the mapW must be everywhere a local isome-

try. This condition may be expressed in terms of its Jacobian. Let J(q) ∈ R3×2 be the Jacobian matrix ∂W/∂q

evaluated at the point q. The map W is an isometry at q if the columns of J(q) are orthonormal. This local

isometry can be enforced for the whole surface with the following least-squares constraint:

∫∫ ∥
∥
∥J(q)TJ(q)− I2

∥
∥
∥

2
dq = 0. (7.7)

In practice, we consider a discretization of the quantity in equation (7.7), namely

Ei(W) =

nj∑

j=1

∥
∥
∥J(gj)

TJ(gj)− I2

∥
∥
∥

2
, (7.8)

where {gj}nj

j=1 is a set of 2D points in the template image space taken on a fine and regular grid (for instance,

a grid of size 30× 30). This term Ei(W) measures the departure from inextensibility of the surfaceW .

Our minimization problem is then to minimize this quantity, over all possible surfaces, subject to the pro-

jection constraints, namely that pointW(qi) projects to (or near to) the image point q′
i, for all i.

7.4.1 Parametric Surface Model

The problem just described involves a minimization over all possible surfaces. Instead of considering this as a

variational problem over all possible surfaces, we consider a parametrized family of surfaces. For this purpose,

we chose Free-Form Deformations (FFD) (Rueckert et al., 1999) based on uniform cubic B-splines (Dierckx,

1993). All the details on this parametric model have been given in section 2.3.2. Here, we just precise the

notation used in this chapter. LetWℓ : R2 → R3 be the parametric FFD, parametrized by a family of 3D points

ℓjk; j ∈ {1, . . . , nu}, k ∈ {1, . . . , nv}, which act as ‘attractors’ for the surface.

For a point q = (u, v) in the template, the surface point is explicitly given as

Wℓ(q) =

nu∑

j=1

nv∑

k=1

ℓjkNj(u)Nk(v). (7.9)

The functions Nj are the B-spline basis functions (Dierckx, 1993) which are polynomials of degree 3. If point

qi = (ui, vi) is fixed and known then the surface point Wℓ(qi) is expressed as a linear combination of the

points ℓjk, and hence can be written in the form Wℓ(qi) = Wiℓ, where Wi is a 3 × nunv matrix depending

only on the point qi, and ℓ is the vector obtained by concatenating all the points ℓjk. Thus, the 3D point is a

linear expression in terms of the parameter vector ℓ. Since the polynomials Nj and Nk depend only on a local

set of the attractor points ℓjk, the matrix Wi is sparse, which is important for computational efficiency.

7.4.2 Surface Reconstruction as a Least-Squares Problem

By replacing Qi by Wiℓ in equation (7.6) we may arrive at a constraint:

∥
∥
∥
∥
∥

([

pT
1

pT
2

]

− q′
ip

T

3

)

Wiℓ

∥
∥
∥
∥
∥
≤ εIpT

3Wiℓ. (7.10)

7.4 SMOOTH AND INEXTENSIBLE SURFACE RECONSTRUCTION 183

We may then formulate the optimization problem as minimizing the inextensibility cost Ei(Wℓ) given in equa-

tion (7.8) over all choices of parameters ℓ, subject to constraints equation (7.10). The constraints are SOCP

constraints, but the cost function equation (7.8) is of higher degree in the parameters. To avoid the difficulties

of constrained non-linear optimization, we choose a different course, by including the reprojection error into

the cost function, leading to an unconstrained problem.

To simplify the formulation of the reprojection error, we introduce the depths µi as subsidiary variables, for

reasons that become evident below. This is not strictly necessary, but reduces the degree of the reprojection-

error term. The minimization problem now takes the form:

min
µ,ℓ
Ed(µ, ℓ) + αEi(ℓ) + βEs(ℓ), (7.11)

where Ed, Ei, Es are the data (reprojection error), inextensibilty, and smoothing terms respectively. The data

term ensures the consistency of the point correspondences with the reconstructed surface. Ei forces the inexten-

sibility of the surface. Eb promotes smooth surface in order to cope with, for instance, lack of data. The relative

influence of these three terms are controlled with the weights α ∈ R+ and β ∈ R+. Note that the choice of α

and β is generally not critical.

The inextensibility term has been described previously. We now describe the two other terms in equa-

tion (7.11).

Data term. Replacing Qi by Wiℓ in equation (7.5) gives an expression for the reprojection error associated

with some point. However, the resulting expression is non-linear with respect to the parameters ℓ. We thus

prefer a linear data term expressed in terms of ‘3D errors’, which is the reason why we introduced the depths µ

of the data points in the optimization problem. The data term is then defined by:

Ed(µ, ℓ) =
nc∑

i=1

∥
∥Wℓ(qi)− µiP−1q̄′

i

∥
∥
2
, (7.12)

which measures the distance between the point Wℓ on the surface and the point at depth µi along the ray

defined by q′
i.

Smoothing term. In some cases, the point correspondences and the hypothesis of an inextensible surface are

not sufficient. For instance, imagine that there is no point correspondence in a corner of the surface. In this case,

there is nothing that indicates how the surface should behave. The corners of the surface can bend freely as long

as they do not extend or shrink (like the corners of a piece of paper). To overcome this difficulty, we can add a

third term (the smoothing term) in our cost function that favours non-bending surfaces. Note that usually, such

terms are used to compensate for the undesirable effects of under-fitting and over-fitting. Doing so is usually a

problem because it requires one to determine a correct value for the weight associated to the smoothing term

(value β in equation (7.11)). This is a sensible and critical way of balancing the effective complexity of the

surface against the complexity of the data. Here, we do not have to care too much. Indeed, the complexity of

the surface is limited by the fact that it is inextensible. Any small value (but big enough to be not negligible,

for instance β = 10−4) is thus suitable for the weight of the smoothing term. We define our smoothing term

using the bending energy:

Es(µ, ℓ) =
3∑

i=1

∫∫
∥
∥
∥
∥
∥

∂2W i
ℓ
(q)

∂q2

∥
∥
∥
∥
∥

2

F
dq. (7.13)

184 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

whereW i
ℓ
(q) is the i-th coordinate of the point, and ‖ · ‖F is the Frobenius norm of the Hessian matrix. With

FFD, there exists a simple and linear closed-form expression for the bending energy:

Es(ℓ) = ‖B1/2ℓ‖2 = ℓTBℓ (7.14)

where B ∈ R3p×3p is a symmetric, positive, and semi-definite matrix which can be easily computed from the

second derivatives of the B-spline basis functions.

7.4.2.1 Initial solution.

The problem of equation (7.11) is a non-linear least-squares minimization problem typically solved using an

iterative scheme such as Levenberg-Marquardt. Such an algorithm requires a correct initial solution. We used

an FFD surface fitted to the 3D points reconstructed with one of the point-wise methods presented in section 7.3.

Subsequently, since we use a surface model which is linear with respect to its parameters, the initial parameters

ℓ can be found by solving the least-squares problem:

min
ℓ

nc∑

i=1

∥
∥Wℓ(qi)−Qi

∥
∥2 ⇔ min

ℓ

nc∑

i=1

‖Wiℓ−Qi‖2 . (7.15)

An alternative is to modify the problem (7.6), expressing Qi in terms of the required parameters ℓ, according

to Qi = Wiℓ. Then one may solve for ℓ directly using SOCP. If necessary, the linear smoothing term of

equation (7.13) can be included in equation (7.15).

7.5 Experimental Results

7.5.1 Experiments on Synthetic Data

In this section, we experiment several aspects of different reconstruction algorithms. We first use synthetic

piece of papers, such as those of figure 7.2, randomly generated using the code provided by (Perriollat and

Bartoli, 2007). The piece of papers are square and 200mm wide. The input images are simulated by projecting

the deformed piece of paper with a virtual camera placed at approximately 1 meter of the paper sheet and with

a focal length of 36mm. A set of nc point correspondences are generated by taking random locations on the 3D

surface. A zero mean Gaussian noise with standard deviation of 1 pixel is added to the point correspondences.

There are no self-occlusion in the data.

Figure 7.2: Example of randomly generated piece of paper. Left: 3D surface. Middle: template image. Right: input image. The

blue dots are examples of point correspondences.

Several algorithms are compared in our experiments:

• SOCPimg: our point-wise method described in section 7.3.2 ;

• FFDref: our smooth reconstruction algorithm described in section 7.4.2 ;

7.5 EXPERIMENTAL RESULTS 185

• FFDinit: the initial solution of our smooth reconstruction algorithm, as described in section 7.4.2 ;

• Salz: the convex formulation proposed in (Salzmann et al., 2009). This method is similar to SOCPimg

except for the noise that is not handled the same way. In (Salzmann et al., 2009), the author minimizes a

cost function that includes a ‘reprojection error’ in order to cope with the noise. In SOCPimg, the noise

is handled with hard constraints.

• PerrioInit: the ‘upper depth bound’ approach of (Perriollat et al., 2008, 2010) which is a point-wise algo-

rithm that iteratively enforces the inextensibility constraints ;

• PerrioRef: the ‘refined approach’ of (Perriollat et al., 2008, 2010) which minimizes a cost function result-

ing in a refined estimation of the 3D points obtained with PerrioInit.

7.5.1.1 Reconstruction Errors

The discrepancy between the reconstructed and the ground truth surfaces are quantified with two measures, de-

pending on the surface model used by the algorithms. The point-wise reconstruction error (PWRE), denoted ep,

can be used for all the algorithms. It is defined by:

ep =
1

nc

nc∑

i=1

‖Qi − Q̂i‖. (7.16)

For algorithms that uses more complex surface models, such as triangular meshes or FFD, we measures the

surface reconstruction error (SRE), denoted es. It is the difference between the reconstructed surfaceWℓ and

the ground truth surface Ŵ:

es =

∫∫
∥
∥Wℓ(q)− Ŵ(q)

∥
∥dq. (7.17)

In this experiment, we use 1,000 randomly generated paper sheets with 150 points correspondences. Fig-

ure 7.3 (a) shows the PWRE for all the algorithms and figure 7.3 (b) shows the SRE for the algorithms that use

a complex surface model. The main result of this experiment is that our approach FFDref gives the smallest re-

construction errors (PWRE and SRE). Globally, the methods that use complex surface models get better results

than the point-wise approaches.

0.�
1
2
�

10

50
100

SO
CP
im
g

Sa
lz

Pe
rr
io
In
it

Pe
rr
io
Re
f

FF
Di
nit

FF
Dr
ef

0.�
1
2
�

10

50
100

FF
Di
nit

FF
Dr
efSa

lz

(a) Point-wise reconstruction error (b) Surface reconstruction error

Figure 7.3: Comparison of the reconstruction errors for different algorithms. The central red line is the median. The limits of the

blue box are the 25th and the 75th percentiles. The black ‘whiskers’ cover approximately 99.3% of the experiment outcomes.

The green crosses are the maximal errors over the 1000 trials.

186 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

7.5.1.2 Length of Geodesics

When a reconstructed 3D surface is reconstructed in a truly inextensible way, the transformation of the straight

line linking two points in the template image must be the geodesic linking the corresponding two 3D points

on the surface. In particular, the length of these two paths must be identical. Testing this hypothesis for our

algorithms FFDinit and FFDref is the goal of this experiment. To do so, we use the same data than in the previous

experiment. For each surface, we choose randomly 10,000 pairs of points in the template image. For each pair

of points (gi,gj), the length l3Dij of the deformed path linking the 3D pointsWℓ(gi) andWℓ(gj) on the surface

is approximated with the following formula:

l3Dij =

ng∑

k=1

∥
∥
∥Wℓ

(
gi +

k
ng
‖gj − gi‖

)
−Wℓ

(
gi +

k−1
ng
‖gj − gi‖

)
∥
∥
∥ , (7.18)

where ng is the number of intermediate points used for the approximation (we use ng = 200 since we ex-

perimentally observed that the approximation stabilizes for values of ng greater than 180). The lengths of the

deformed paths are plotted against their reference length in the template image in figure 7.4 (a) for FFDinit and

in figure 7.4 (b,c) for FFDref. Figure 7.4 (b) and figure 7.4 (c) show that, with the surfaces reconstructed with

FFDref, the length of the deformed paths are almost equal to the length they should have if they were actual

geodesics. In other words, our approach FFDref reconstructs 3D surfaces which are truly inextensible. On the

other hand, figure 7.4 (a) shows that the initial solution FFDinit (which is just an FFD fitted to a sparse set of

reconstructed 3D points) seems to be much less inextensible.

(a) FFDinit (b) FFDref (c) Magnification of (b)

Figure 7.4: Plot of the length of deformed paths against the length they should have if the reconstructed surface was truly

inextensible. The red diagonal line is the place where all the blue points should be for inextensible surfaces.

Let l2Dij be the Euclidean distance between the points gi and gj . Table 7.2 gives some statistics on the

relative error between the computed length l3Dij and the reference length l2Dij , i.e. the quantity (l2Dij − l2Dij)/l3Dij .

These numbers confirm the results seen in figure 7.4.

Mean Std deviation Median Minimun Maximum

FFDinit 0.0119 0.0417 0.0036 −1.9689 0.8931

FFDref 2.0084× 10−5 7.1965× 10−4 5.8083× 10−6 −0.0505 0.3396

Table 7.2: Statistics on the relative errors between the length of transformed paths and the length they should have.

7.5.1.3 Gaussian curvature

The Gaussian curvature is the product of the two principal curvature (which are the reciprocal of the radius of

the osculating circle). For an inextensible surface, the Gaussian curvature is null. In this experiment, we check

if this property is satisfied by the smooth surfaces reconstructed with FFDinit and FFDref. We used the same

7.5 EXPERIMENTAL RESULTS 187

Mean Std deviation Median Minimun Maximum

FFDinit 4.9458× 10−4 0.0875 9.7302× 10−5 7.5122× 10−14 258.2379

FFDref 5.0046× 10−6 7.1320× 10−4 1.7333× 10−6 2.2325× 10−14 1.5199

Table 7.3: Statistics on the (absolute value of the) Gaussian curvatures for 1,000 reconstructed surfaces and 10,000 points

per surface.

1,000 reconstructed surfaces than in the previous experiment. The Gaussian curvature, denoted κ, is computed

for 10,000 randomly chosen points on the surface with the formula κ = det(II)
det(I) , where I and II are the first

and the second fundamental forms of the parametric surface (Gray, 1997). The results of this experiment are

reported in table 7.3. It shows that, in average, the Gaussian curvature of the surfaces reconstructed using

FFDref are consistently close to 0. It also shows that FFDref gives Gaussian curvatures which are 100 times

smaller than the ones obtained with FFDinit. These results demonstrate that the surfaces reconstructed with our

approach FFDref are indeed inextensible. Note that this kind of experiment cannot be achieved if a smooth

surface is not available.

7.5.2 Experiments on Real Data

The algorithms used in the synthetic experiments of section 7.5.1 are applied to real data in figure 7.5 and

figure 7.6. These figures shows that our approaches gives good results on real data. In particular, figure 7.5

shows that our method FFDref outperforms the other approaches in the presence of a self-occlusion. This comes

from the fact that FFDref requires the surface to be inextensible everywhere, even if there are no point corre-

spondences (which is the case on the self-occluded part of the paper sheet). An accurate stereo reconstruction

of the surface in figure 7.6 were available. We compare in table 7.4 the average 3D errors between the surfaces

reconstructed with a monocular approach to the stereo reconstruction. Again, our method FFDref is the one

giving the best results.

SOCPimg Salz FFDrefPerrioRef FFDinit

Template
image

(+ point
corresp.)

Figure 7.5: Illustration of monocular reconstruction algorithms in the presence of a self-occlusion (the point correspondences

were automatically extracted using (Gay-Bellile, 2008)). Note how our algorithm FFDref is able to recover a reasonable shape

for the occluded part.

PerrioRef SOCPimg Salz FFDinit FFDref

2.388 2.261 4.743 2.259 1.991

Table 7.4: Average 3D error (in millimeters) with respect to the stereo reconstruction of the surface for the surfaces of figure 7.6.

188 Chapter 7. MONOCULAR RECONSTRUCTION OF INEXTENSIBLE SURFACES

PerrioRef SOCPimg Salz FFDinit FFDref

Template
image

Stereo reconstr.

Figure 7.6: Illustration of the results obtained with several monocular reconstruction algorithms. First row: input image along

with a reprojection of the reconstructed 3D surface. Second row: reconstructed surface from a different point of view. Note

that the stereo reconstruction (first column) is not a monocular algorithm: it is just used to assert the quality of the other

reconstructed surfaces (see table 7.4).

7.6 Conclusion

In this chapter, we presented new approaches for monocular reconstruction of inextensible surfaces imaged by

a perspective camera. In particular, we proposed a SOCP formulation of the problem that accounts for noise in

both the template and the input images. We also designed an algorithm that directly reconstruct a smooth surface

based on free-form deformations. This algorithm outperforms previous approaches in terms of precision of the

reconstructed surface. Besides, we experimentally showed that the surfaces reconstructed with this algorithm

are truly inextensible. The only drawback of this approach is that it is formulated as a non-linear least-squares

minimization problem with a non-convex cost function. However, we proposed a method to build an initial

solution which is close to the optimum. It allows us to get rid of the difficulties linked to the non-convexity of

the cost function.

189

Chapter 8
Conclusion

190 Chapter 8. CONCLUSION

Achievements. The work presented in this thesis deals with the modelling and the estimation of parametric

models in surface fitting, image registration, and 3D reconstruction. We have presented various contributions

related to different topics in Computer Vision: range surface fitting, feature-based and direct image registration,

3D reconstruction of a deforming surface. Several aspects have been considered from the design of parametric

models to the estimation of the parameters and the hyperparameters themselves. Although these contributions

may appear quite different, they are linked together in different ways. First, all of our contributions consider

a deformable environment. This is interesting since over the past few decades Computer Vision has produced,

for the topics we have considered, useful and effective results but mainly in rigid environments. Second, it is

clear that our contributions all point at a single objective: the reconstruction of arbitrary deformable surfaces.

Indeed, surface fitting is a general problem which is useful to convert a sparse set of 3D points into a smooth and

analytical representation of the same surface. Image registration (whatever approach is used) is generally one

of the early steps in 3D surface reconstruction algorithms. In this thesis, we surely not have solved the ultimate

goal of Computer Vision that would be the 3D reconstruction of arbitrary surfaces in deformable environments

but our contributions constitute a step towards this goal.

Synthesis of our contributions. As said previously, we have made contributions linked to several topics of

Computer Vision. These contributions include the following items.

Surface fitting. We have proposed several methods to fit a smooth parametric surface to range data.

These algorithms are efficient in the sense that they provide accurate results in reasonable computational times.

This has been made possible by a correct modelling of the considered data. For instance, we have taken into

account the fact that the typical noise of a depth map acquired with a ToF camera is heteroskedastic. We

have also exploited the particular properties of the tensor-product surface model to achieve good computational

performance when the data are arranged on a regular grid.

Image registration. We have made several contributions related to image registration ranging to a general

model of warp able to model perspective effects and deformable environment to specific technique to parameter

and hyperparameter estimations. More precisely, we have exploited the properties of the NURBS to efficiently

model deformations appearing under perspective image conditions. Concerning the estimation of the param-

eters, we have proposed contributions related with the two main approaches to image registration: the direct

approach and the feature-based approach. In the direct approach, we have presented a new algorithm that al-

lows one to discard the delicate problem related to the region of interest. This has been made possible by an

adequate modelling of the so-called off-target pixels which consisted in saying that such pixels may be seen as

classical outliers. Therefore, a standard robust estimation framework based on M-estimators allowed us to have

a unified processing of all the pixels. In feature-based image registration, we have proposed a new approach to

tune any hyperparameters that may intervene in such problems.

3D Surface reconstruction. The purpose of our last contribution has been to reconstruct a 3D surface in a

deformable environment from a monocular video. It is well known that such a problem is intrinsically ill-posed

since potentially there exists an infinite number of surfaces having the same projection in an image. We thus

considered common assumptions which consisted in saying that the surface to reconstruct was inextensible

and that a reference shape was known. Given these assumptions, we proposed two algorithms to solve the

reconstruction problem. First, we proposed a point-wise algorithm, i.e. an algorithm that reconstructed only a

sparse set of 3D points. This first algorithm is formulated as an SOCP problem. Second, we proposed a method

191

that directly reconstruct a smooth parametric surface. It is formulated as a standard least-squares minimization

problem. Our main contribution was to propose a new term enforcing the inextensibility of the reconstructed

surface.

Hyperparameter selection. The automatic selection of hyperparameters has been an important transver-

sal topic in the work presented in this thesis. We have emphasized the fact that choosing proper hyperparameters

is important to get correct results. We have also shown that this choice may not be always trivial. In this thesis,

hyperparameters have been handled in several contexts. We have proposed two different ways of automati-

cally tuning the hyperparameters in range surface fitting: the L-Tangent Norm criterion and an adaptation of

Morozov’s discrepancy principle. In feature-based image registration, we have proposed a new framework to

automatically select any hyperparameter. It relies on the fact that in feature-based image registration, the point

correspondences are not the only available data: there is also the photometric information contained in the im-

ages. Therefore, we have proposed to use the point correspondences as a training set for the natural parameters

and the photometric information as a test set for the hyperparameters.

What’s next? The ultimate goal of automatically reconstructing an arbitrary deforming surface has not been

reached yet. There is still a long way to go before any surface in any context could be reconstructed from

images. Even though the design of such a ultimate algorithm would be a nice proceeding to this thesis, we also

focus on shorter term goals.

Range surface fitting. Even though we have proposed efficient algorithms for fitting surfaces on range

data, there are some problems which still await to be solved. In particular, handling discontinuities is a major

issue in range surface fitting. Several approaches may be considered, such as using a different parametric

surface model that would be able to properly model discontinuities. Such a model would require one to design

specific parameter estimation techniques.

Hyperparameters in feature-based image registration. We have proposed a generic framework to auto-

matically determine proper hyperparameters in feature-based image registration. However, the criteria resulting

of our idea are generally difficult to optimize. In particular, they may have several local minima and they may

not be continuous. An automatic procedure to minimize the proposed criterion would be a natural conclusion to

this work. Given the nature of the cost function to optimize, combinatorial optimization based on metaheuris-

tics (such as simulated annealing, Kangaroo’s algorithm, or genetic algorithms (Fleury and Gourgand, 1998))

would be a good starting point to solve this problem.

Monocular reconstruction of smooth surface. We have proposed an effective way to reconstruct smooth

and inextensible surfaces from a monocular sequence of images. This has been made possible by introducing

a term in the cost function that penalizes departure from pure inextensibility. Although efficient, this approach

has an important computational cost. Other ways of enforcing inextensibility should be explored. In particular,

noticing that an inextensible surface has a null Gaussian curvature may be a good starting point. Besides, not

all surfaces are inextensible. Other types of constraints should also be envisaged.

Regularization terms. As we have showed in this thesis, it is often required to use a regularization term in

order to have well-posed problems. We often used regularization terms based on the bending energy, regardless

of the problem’s nature. Other regularization terms could be useful. In particular, it would be interesting to

192 Chapter 8. CONCLUSION

study regularization terms of order higher than two. It would also be interesting to use multiple regularization

terms and select the most appropriate one based on the data.

193

Appendix A
Feature-Driven Direct Non-Rigid Image

Registration

In this appendix, we report an article which has been

submitted to the International Journal of Computer Vision.

This article has been recently accepted with minor revi-

sions. The work presented in this article has been done in

collaboration with Vincent Gay-Bellile1 and Adrien Bartoli.

Note that the article is reproduced without any modifica-

tion compared to the journal version (except for the num-

bering of the sections). In particular, this implies that there

might be some slight differences in the notation compared

to the rest of this document.

1CEA LIST, Embedded Vision Systems Laboratory, Point Courrier 94, Gif-sur-Yvette, F-91191 France

194 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Abstract. The direct registration problem for images of a deforming surface has been well studied. Para-

metric flexible warps based, for instance, on the Free-Form Deformation or a Radial Basis Function such as

the Thin-Plate Spline, are often estimated using additive Gauss-Newton-like algorithms. The recently pro-

posed compositional framework has been shown to be more efficient, but cannot be directly applied to such

non-groupwise warps.

Our main contribution in this paper is the Feature-Driven framework. It makes possible the use of compo-

sitional algorithms for most parametric warps such as those above mentioned. Two algorithms are proposed to

demonstrate the relevance of our Feature-Driven framework: the Feature-Driven Inverse Compositional and the

Feature-Driven Learning-based algorithms. As another contribution, a detailed derivation of the Feature-Driven

warp parameterization is given for the Thin-Plate Spline and the Free-Form Deformation. We experimentally

show that these two types of warps have a similar representational power. Experimental results show that

our Feature-Driven registration algorithms are more efficient in terms of computational cost, without loss of

accuracy, compared to existing methods.

A.1 Introduction

Registering images of a deforming surface is important for tasks such as video augmentation by texture editing,

deformation capture and non-rigid Structure-from-Motion. This is a difficult problem since the appearance

of imaged surfaces varies due to several phenomena such as camera pose, surface deformation, lighting and

motion blur. Recovering a 3D surface, its deformations and the camera pose from a monocular video sequence

is intrinsically ill-posed. While prior information can be used to disambiguate the problem, see e.g. (Bregler

et al., 2000; Gay-Bellile et al., 2006; Pilet et al., 2005), it is common to avoid a full 3D model by using image-

based deformation models, e.g. (Bartoli and Zisserman, 2004; Bookstein, 1989; Cootes et al., 1998; Lim and

Yang, 2005). The Thin-Plate Spline warps (TPS) is one possible deformation model, proposed in a seminal

paper by (Bookstein, 1989), that has been shown to effectively model a wide variety of image deformations

in different contexts. Recent work shows that the TPS warp can be estimated not only with the traditional

landmark based method, but also with direct methods, i.e. by minimizing the intensity discrepancy between

registered images (Bartoli and Zisserman, 2004; Lim and Yang, 2005). Other non-rigid warps include Radial

Basis Functions (with e.g. multiquadrics (Little et al., 1997) or Wendland’s (Fornefett et al., 1999) as kernel

function) and Free-Form Deformations (Rueckert et al., 1999).

The Gauss-Newton algorithm with additive update of the parameters is usually used for conducting the

minimization. Its main drawback is that the Hessian matrix must be recomputed and inverted at each iteration.

More efficient solutions have been proposed by (Baker et al., 2004) based on compositional updating of the pa-

rameters. They might lead to a constant Hessian matrix. Most non-rigid warps do not form groups, preventing

the use of compositional algorithms which require one to compose and possibly invert the warps. Despite sev-

eral attempts to relax the groupwise assumption by various approximations (Gay-Bellile et al., 2006; Matthews

and Baker, 2004; Romdhani and Vetter, 2003), there is no simple solution in the literature.

This paper is an extended version of an earlier conference version (Gay-Bellile et al., 2007). With respect

to the literature, it brings several contributions:

• The main contribution of this paper is the Feature-Driven registration concept. It allows one to devise

compositional algorithms while relaxing the strict groupwise warp requirement, and is thus applicable to

most non-rigid parametric warps. The main idea is to parametrize the warp by a set of driving features

instead of the usual control points or coefficients, and to act on these features directly.

A.1 INTRODUCTION 195

• Two operations, reversion and threading, are defined using the Feature-Driven parametrization. They

respectively approximate inversion and composition when those are not guaranteed to exist or cannot be

easily computed.

• Using our Feature-Driven framework, we extend the Inverse Compositional algorithm to non-rigid warps.

Our framework also allows us to propose a forward Learning-based algorithm for non-rigid warps. Be-

sides, we improve the classical linear learning algorithm using a new piecewise linear relationship.

• We give a detailed derivation of the Feature-Driven parametrization for the TPS and FFD warps. In partic-

ular, we present an extrapolation method for the FFD warp, required for the Feature-Driven framework.

We also show that the TPS and FFD warps have a similar representational power.

We experimentally show that Feature-Driven algorithms are clearly more efficient without loss of accu-

racy compared to previous state-of-the-art methods. The combination of the Feature-Driven framework with

Learning-based local registration outperforms other algorithms for most experimental setups.

Roadmap. Previous work is reviewed in section A.2. In particular, previous attempts to extending composi-

tional algorithms to non-groupwise warps are presented in section A.2.2. The Feature-Driven framework and

the associated operations are explained in section A.3. Registration with the Feature-Driven Inverse Compo-

sitional and the Feature-Driven Learning-based algorithms are described in section A.4. The Feature-Driven

parametrization of the TPS and of the FFD warps are detailed in section A.5. Experimental results on simulated

and real data are reported in section A.6. Conclusions and further work are discussed in section A.7. Details on

the piecewise linear relationship we used for the Learning-based local registration step are given in appendix

A.7.

Notation. Scalars are in italics (x), vectors in bold (v), matrices in sans-serif (M) and sets (or collections) in

fraktur (C). Vectors are always considered as column vectors. The inverse of a matrix M is written M−1, the

pseudo-inverse M† and the transpose MT. The symbol R denotes the set of the real numbers. The identity matrix

of size n is denoted In. The notation 0m×n and 1m×n corresponds to the matrices of size m × n filled with

zeros and ones respectively. The operator that vectorizes a matrix is denoted ν, i.e. ν(M) =
(
mT

1 . . . mT

l

)T

where the vectors {mi}li=1 are the columns of M. Conversely, the operator ζp builds a matrix of size Rq×p

from a vector of size Rpq, i.e. ζp(v) = (v1 . . . vp) ∈ Rq×p where v =
(
vT
1 . . . vT

l

)T ∈ Rpq. The notation ζ

is used to abbreviate ζ2. We denote rms(v) the Root Mean of Squares (RMS) of the m-vector v, i.e. rms(v) =
√

1
m

∑m
i=1 v

2
i ∝ ‖v‖, with ‖ • ‖ the two-norm.

Images are considered as R2 → R functions2 and are denoted using calligraphic fonts (A). If C is a

collection of pixels then ξC(I) is the vector in which are stacked the values of I for all the pixels indicated

in C. More precisely, if C = {qi}|C|i=1 then ξC(I) =
(
I(q1) . . . I(q|C|)

)T ∈ R|C| where |C| is the cardinal of

the set C.

The images to be registered are written Ii with i = 1, . . . , n. The texture image, e.g. the region of interest

in the first image, is denoted I0. The set of pixels of interest, i.e. the subset of pixels of the image I0 actually

used to estimate a warp, is denoted R. A generic parametric warp is written W . It depends on a parameter

vector ui for image Ii and maps a point q0 from the texture image to the corresponding point qi in the i-th

image: qi = W(q0;ui). The notation W(q; •) designates the warp as a function of its parameters, i.e. an

Rl × R2 function where l is the size of the parameter vector, instead of as a function of the pixels.

2In practice, images are R2 → Rc functions where c is the number of channels. For the sake of simplicity and without loss of

generality, we consider that c = 1 in all the derivations of this article.

196 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

A.2 Problem Statement and Previous Work

The registration of images of deformable surfaces has received a growing attention over the past decade. Usu-

ally, for purely twodimensional registration, as is the case in this paper, smoothness constraints are used to filter

out the noise and ‘fill-in’ the optical flow in untextured image areas. These soft constraints are either implicitly

incorporated in a parameterized warp or enforced through regularization. In this paper, we focus on direct as

opposed to feature-based methods, e.g. (Pilet et al., 2005; Torr and Zisserman, 1999). In the feature-based

methods, the warp parameters are estimated from features, such as points, which have first been extracted and

matched in the images to register (Szeliski, 2006). Note that there exist methods that mix both the feature-

based and the direct approaches to image registration. See for instance, (Georgel et al., 2008; Johnson and

Christensen, 2002).

Direct registration consists in minimizing the pixel value discrepancy. Registration of an image sequence

is posed as a set of nonlinear optimization problems, each of which estimating ui using the registration ui−1

of the previous frame as an initial solution. The discrepancy function C is usually chosen as the two-norm

of the difference D between the texture image and the current one, warped towards the texture image, i.e.

D(q;ui) = I0(q)− Ii(W(q;ui)), giving:

C(ui) =
∑

q∈R
‖D(q;ui)‖2 . (A.1)

Other choices are possible for the cost function, such as the Mutual Information, see e.g. (Meyer et al., 1997;

Pluim et al., 2003), or a criterion based on the gradient of images, see (Haber and Modersitzki, 2006).

Several algorithms have been proposed to minimize C. We classify them in two groups: the Forward

Additive algorithms and the Inverse Compositional ones.

A.2.1 Forward Additive Algorithms

Forward Additive Gauss-Newton (FA-GN). Using an additive update of the parameter vector, i.e. ui ←
ui+δ, Gauss-Newton can be used in a straightforward manner for minimizing equation (A.1) or in conjunction

with complexity tuning schemes as in (Bartoli and Zisserman, 2004; Lim and Yang, 2005) for the TPS warp.

The local Gauss-Newton approximation to C is given by the first order Taylor expansion in δ of each squared

term in equation (A.1):

C(ui + δ) ≈
∑

q∈R
‖D(q;ui) + g(q;ui)

Tδ‖2. (A.2)

The gradient vector g is the product of the image gradient vector and of the Jacobian matrix K of the warp, i.e.

g = ∇ITi K. The Gauss-Newton approximation induces a Linear Least Squares minimization problem in δ.

Defining J as the Jacobian matrix of the error, obtained by stacking the gradient vectors g(q;ui)
T for all the

pixels q in R, and d = ξR(D(• ;ui)) the residual error vector, the solution is obtained through the normal

equations:

Hδ = −b with H = JTJ and b = JTd. (A.3)

The matrix H is the Gauss-Newton approximation to the Hessian matrix. Note that J, H and d depend on ui.

The Jacobian matrix J must be recomputed at each iteration, implying that H must be recomputed and inverted

as well.

Forward Additive ESM (FA-ESM). A second order approximation of C called ESM (Efficient Second-

order Minimization), theoretically better than the Gauss-Newton one, is proposed in (Benhimane and Malis,

A.2 PROBLEM STATEMENT AND PREVIOUS WORK 197

2004). Combined with an additive update of the parameters, it gives:

C(ui + δ) ≈
∑

q∈R

∥
∥
∥D(q;ui) +

1
2 (g(q;ui) + g(q;u0))

T δ
∥
∥
∥

2
. (A.4)

The ESM approximation has been shown to improve the convergence rate, compared to Gauss-Newton, without

increasing the computation time per iteration since the gradient vectors g(q;u0) are constant.

A.2.2 Inverse Compositional Algorithms

The major drawback of the two above-presented methods is that the image gradient vector for each pixel in R

must be recomputed at each iteration. This is the most expensive step of the process. A major improvement

was proposed by (Baker et al., 2004) with the Inverse Compositional algorithm. The first key idea consists in

switching the roles of the texture and of the current images:

min
ũ

∑

q∈R
‖I0 (W(q; ũ))− Ii (W(q;ui))‖ . (A.5)

The second idea is to update the current warp by composition:

W(• ;ui)←W(• ;ui) ◦W−1(• ; ũ). (A.6)

Using Gauss-Newton for local registration leads to a constant Jacobian matrix and a constant Hessian matrix

whose inverse is thus pre-computed. Of course, the inverted warp W−1 exists only if the considered set of

warps is a group. For instance, homographic warps are used in the original Inverse Compositional algorithm

(Baker et al., 2004). In this case, inversion is obtained by inverting the associated 3×3 matrix and composition

by multiplying those matrices. Several attempts have been made to relax the groupwise requirement for flexible

models.

As proposed in (Gay-Bellile et al., 2006; Matthews and Baker, 2004; Romdhani and Vetter, 2003), these

attempts usually consist in finding the best approximating warp for the pixels of interest in R:

ui ← argmin
u′
i

∑

q∈R
‖W(W(q;u);ui)−W(q;u′

i)‖2. (A.7)

In (Matthews and Baker, 2004; Romdhani and Vetter, 2003), the warp is induced by a triangular mesh whose

deformations are guided by a parameter vector. This minimization problem is usually solved in two steps.

First the vertices in the current image are computed using the assumption of local rigidity. They usually are

not in accordance with a model instance in e.g. the case of 3D Morphable Model (Gay-Bellile et al., 2006;

Romdhani and Vetter, 2003). Second, the parameter update is recovered by minimizing a prediction error, i.e.

the distance between the updated vertices and those induced by the parameters. This last step may be time

consuming since nonlinear optimization is required. Warp inversion is approximated with first order Taylor

expansion in (Matthews and Baker, 2004), while (Romdhani and Vetter, 2003) draws on triangular meshes to

avoid linearization. By comparison, our method reverts and threads warps in closed-form: it does not require

optimization.

Other methods have been proposed to obviate the shortcomings induced by non-groupwise warps. For in-

stance, one may force the solution space to contain diffeomorphic warps (Charpiat et al., 2005; Johnson and

Christensen, 2002; Joshi and Miller, 2000). The solution space thus constitutes a group. Requiring the warps

to be diffeomorphisms may be an overly strong requirement. This is especially true when the deformations are

198 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

not too important. Indeed, as noted in (Johnson and Christensen, 2002), with such deformations the estimated

warps may be diffeomorphisms even though the solution space contains non-diffeomorphic warps. Besides,

such approaches make the use of standard deformation models such as the TPS and the FFD generally impossi-

ble. This is one interesting point of the proposed approach in this paper: it proposes an efficient method which

is built on top of the most common deformation models for image registration. Finally, enforcing the estimated

warps to be diffeomorphisms is often achieved by adding supplementary constraints to an initial forward esti-

mation algorithm. These constraints are generally impractical to design a fast inverse-compositional estimation

algorithm.

A.3 Feature-Driven Registration

In this section, we present our principal contribution: the Feature-Driven framework. This framework, in which

one directly acts on warp driving features, has two main advantages. First, it often is better balanced to tune

feature positions, expressed in pixels, than coefficient vectors that may be difficult to interpret, as for the TPS or

the FFD warps. Second, it allows one to use the efficient compositional framework in a straightforward manner.

Indeed, warp composition and inversion cannot be directly done for non-groupwise warps. We propose empir-

ical means for approximating warp composition and inversion through their driving features, called threading

and reversion respectively. Our Feature-Driven framework is generic in the sense that it can be applied to almost

any parametric warps such as the TPS or the FFD warps, as shown in section A.5.

A.3.1 Feature-Driven Warp Parameterization

Ignoring the set of parameters, a warp is an R2 → R2 function usually parameterized by a set of n control

points pi = (pxi p
y
i)

T ∈ R2 for i = 1, . . . , n. These control points are grouped in a vector p = ν(P) ∈ R2n

where P ∈ Rn×2 is the matrix defined by PT = (p1 . . . pn). We write ω the warp in its natural parameteriza-

tion. The warp ω is said to be linear when it can be defined as a linear combination of its control points:

ω(q;p) = ℓTqP, (A.8)

where ℓq ∈ Rn is a vector that depends on the point q and on the type of warp being considered. Note that

the dependency on q of ℓq is usually non linear even if the warp is linear. The control points are usually not

interpolated. They just act as ‘attractors’ to the warp. It thus makes their interpretation difficult. The Feature-

Driven concept is in fact a change of parameterization. The control points are replaced by a set of features

that are interpolated by the warp. We call them the driving features and denote them u0 in the texture image

and v in the current one (see figure A.1). We denote W the Feature-Driven parameterization of the warp ω.

Loosely speaking, matching the driving features between two images is equivalent to defining a warp since the

warp can be used to transfer the driving features from one image to the other, while conversely, the warp can

be computed from the driving features. Indeed, if the warp is linear with respect to its control points then it is

always possible to find a matrix E such that:

W(q;v) = ℓTqEV, (A.9)

with V = ζ(v), i.e. V equals to v reshaped on two columns. Matrix E can be pre-computed. Details on how the

matrix E is obtained for the TPS and the FFD warps are given in section A.5.1 and section A.5.2 respectively. If

A.3 FEATURE-DRIVEN REGISTRATION 199

we write µq = ETℓq then the Feature-Driven parameterization of the warpW is given by:

W(q;v) = µT

qV. (A.10)

Figure A.1: Illustration of the Feature-Driven parameterization. The vector u0 contains the features in the texture image (the

centers). ω(• ;p) and W(• ;v) are two different representations of the same warp. The first one is parameterized with the

‘natural’ control points p while the second one is parameterized with the driving features v.

Identity Warp. If we denote u0 the features in the texture image thenW(• ;u0) is the identity warp3, i.e. the

warp that leaves the location of the features u0 unchanged.

A.3.2 Threading Warps

Given two sets of driving features, v = ν
(
(v1 . . . vl)

T
)

and v′ = ν
(
(v′

1 . . . v
′
l)
T
)
, we want to find a

third set v′′ = ν
(
(v′′

1 . . . v′′
l)

T
)

defined such that threading the warps induced by v and v′ results in the

warp induced by v′′, as shown in figure A.2. We propose a simple and computationally cheap way to do it,

as opposed to previous work. This is possible thanks to the Feature-Driven parameterization. Our idea for

threading warps is very simple: we apply the v′ induced warp to the features v; the resulting set of features is

v′′. We thus define the warp threading operator, denoted �, as:

W(• ;v) �W(• ;v′) def
= W(• ;v′′) with v′′ =W(v;v′), (A.11)

whereW(v;v′) is meant to be applied to each feature in v.

Figure A.2: The Feature-Driven warp threading process: v
′′

is defined by v
′′ = W(v;v′).

3Actually, it can also be a very close approximation, depending on how the matrix E is defined.

200 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Examples of our warp threading process are shown in figure A.3. We synthesized two sets of driving

features v and v′ by randomly disturbing a 3× 3 regular grid from its rest position u0. As expected, threading

a warpW(• ;v) with the identityW(• ;u0) returns the original warp i.e.W(• ;v) = W(• ;v) �W(• ;u0)

andW(• ;v) =W(• ;u0) �W(• ;v).

=

=

=

Figure A.3: Examples for the warp threading process.

A.3.3 Reverting Warps

Given a set v of driving features, we want to determine the features v′ such that the warp they induce is the

reversion of the one induced by v. This is illustrated in figure A.4. As for the threading, our Feature-Driven

framework yields a very simple solution. The idea is that applying the v′ induced warp to v should give u0 i.e.

, the fixed driving features in the texture image. We thus introduce the reversion operator ⋄ as:

W(• ;v)⋄ def
= W(• ;v′) withW(v;v′) = u0, (A.12)

This amounts to solving an exactly determined linear system, the size of which is the number of driving features.

Using equation (A.10), we obtain:

MV′ = U0, (A.13)

where M ∈ Rl×l is the matrix defined by MT =
(
µv1

. . . µvl

)
, V′ = ζ(v′) and U0 = ζ(u0). The driving

features v′ of the reverted warp are thus given by:

v′ = ν
(
M−1U0

)
. (A.14)

Figure A.4: The Feature-Driven warp reversion process: v
′

is defined such that W(v;v′) = u0.

Examples of the reverting process are shown in figure A.5. We synthesized driving features v by randomly

A.4 LOCAL REGISTRATION ALGORITHMS 201

disturbing a 3 × 3 regular grid from its rest position u0. The driving features v′ result from reverting the

warp W(• ;v). Threading warps W(• ;v) and W(• ;v′) introduce a new set of driving features v′′. As

expected, the features v′′ are similar to the original grid u0 with an average residual error of 10−13 pixels.

=

=

=

(Reverting)

(Threading)

Figure A.5: Illustration of the warp reversion process on three examples.

A.3.4 Compositional Feature-Driven Registration

Relying on the Feature-Driven parameterization properties, we extend compositional algorithms to non-groupwise

warps. The following three steps are repeated until convergence, as shown in figure A.6:

• Step 1: Warping. The current driving features ui are used to warp the input image Ii, thereby globally

registering it to the texture image by creating the warped image IW :

IW (q)
def
= Ii(W(q;ui)). (A.15)

• Step 2: Local registration. The driving features u are estimated in the warped image IW . Several

algorithms can be used. They are described in section A.4.1 and section A.4.2. Note that for the Inverse

Compositional algorithm, warp reversion is done at this step, based on equation (A.12).

• Step 3: Updating. The current driving features ui and those in the warped image u are combined by

threading the warps using equation (A.11), to update the driving features ui in the current image.

Note that in previous work (Gay-Bellile et al., 2006; Matthews and Baker, 2004; Romdhani and Vetter, 2003)

a preliminary step is required before applying the update rule, as reviewed in section A.2.2. In comparison, our

Feature-Driven framework makes it naturally included into the third step.

Illumination changes are handled by globally normalizing the pixel values in the texture and the warped

images at each iteration. Another approach could be used such as the light-invariant approach of (Pizarro and

Bartoli, 2007).

A.4 Local Registration Algorithms

In the literature, there are two ways for estimating local registration: the Forward and the Inverse approaches

(Baker et al., 2004). The former evaluates directly the warp which aligns the texture image I0 with the warped

202 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Step 1 - Warping

Step 2 - Local
Alignement

Step 3 - Threading

Figure A.6: The three steps of the Compositional Feature-Driven registration.

image IW . The latter computes the warp which aligns the warped with the texture image and then inverts

the warp. They are both compatible with approximations of the cost function such as Gauss-Newton, ESM,

learning-based, etcWe describe in details the Inverse Gauss-Newton and the Forward Learning-based local

registration steps.

A.4.1 Local Registration with Gauss-Newton

Combining an Inverse local registration with a Gauss-Newton approximation of the cost function is efficient

since this combination makes invariant the approximated Hessian matrix used in the normal equations to be

solved at each iteration. We cast this approach in the Feature-Driven framework, making it possible to extend

Inverse Compositional registration to the TPS and the FFD warps.

In the Inverse Compositional framework, local registration is achieved by minimizing the local discrepancy

error:

Cl(ũ) =
∑

q∈R
‖I0(W(q; ũ))− IW (q)‖2. (A.16)

Using Gauss-Newton as local registration engine, the gradient vector is the product of the texture image

gradient vector and of the constant Jacobian matrix K of the warp: g = ∇IT0 K. Matrix K is given in section A.5.

The Jacobian matrix of this least squares cost is thus constant. The Hessian matrix H and its inverse are

computed off-line. However, the driving features ũ are located on the reference image I0. They must be

located on the warped image IW for being used in the update. We use our warp reversion process for finding

the driving features u on the warped image i.e. , u such thatW(ũ;u) = u0. An overview of Feature-Driven

Inverse Gauss-Newton registration is shown in table A.1.

A.4.2 Learning-Based Local Registration

Learning-based methods model the relationship between the local increment δ and the intensity discrepancy d

with an interaction function f :

δ = f(d). (A.17)

The interaction function is often approximated using a linear model, i.e. f(d) = Fd where F is called the

interaction matrix. This relationship is valid locally around the texture image parameters u0. Compositional

A.4 LOCAL REGISTRATION ALGORITHMS 203

Off-line

• Evaluate the gradient ∇I0 of the reference image

• Evaluate the constant Jacobian K of the warp

• Compute the Jacobian matrix J of the cost function

• Compute the pseudo Hessian H = JTJ and its inverse H−1

On-line

• Compute the error vector d = ξR(I0 − IW)

• Compute b = JTd

• Estimate ũ = u0 − H−1b

• Find the driving features u such thatW(ũ;u) = u0

• Update by threading:W(• ;ui)←W(• ;ui) �W(• ;u)

Table A.1: Overview of our Feature-Driven Inverse Compositional Gauss-Newton registration.

algorithms are thus required, as in (Jurie and Dhome, 2002) for homographic warps. The Feature-Driven frame-

work naturally extends this approach to non-groupwise warps. However in (Cootes et al., 1998) the assumption

is made that the domain where the linear relationship is valid covers the whole set of registrations. They thus

apply their interaction function around the current parameters, avoiding the warping and the composition steps.

This does not appear to be a valid choice in practice.

The interaction function is learned from artificially perturbed texture imagesAj . They are obtained through

random perturbations of the reference parameter u0. In the literature, linear and non linear interaction functions

are used. They are learned with different regression algorithms such as Least Squares (LS) (Cootes et al., 1998;

Jurie and Dhome, 2002), Support Vector Machines (SVM) or Relevance Vector Machines (RVM) (Agarwal and

Triggs, 2006). Details are given below for a linear interaction function, i.e. an interaction matrix, learned

through Least Squares regression. Table A.2 summarizes the steps of learning-based local registration.

Off-line

• Learn the interaction function f

On-line

• Compute the error vector d = ξR(I0 − IW)

• Compute u = u0 + f(d)

• Update by threading:W(• ;ui)←W(• ;ui) �W(• ;u)

Table A.2: Overview of our Learning-based registration.

204 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Generating training data with a Feature-Driven Warp. The driving features in the texture image are dis-

turbed from their rest position u0 with randomly chosen directions θj and magnitudes rj :

uj = u0 + δj with δj =

(

rj ⊙ cos(θj)

rj ⊙ sin(θj)

)

, (A.18)

where cos(θj) and sin(θj) are meant to be applied to all the elements of θj and ⊙ denotes the element-wise

product. The magnitude is clamped between a lower and an upper bound, determining the area of validity of

the interaction matrix to be learned. For a Feature-Driven warp, fixing this magnitude is straightforward since

the driving features are expressed in pixels. It can be much more complex when the parameters are difficult to

interpret such as the usual coefficients of the TPS and the FFD warps. There are two ways to synthesize images:

Aj(q)← I0(W(q;uj)
⋄) (A.19)

or

Aj(q)← I0(argminq ‖W(q;uj)− q‖). (A.20)

The former requires warp inversion whereas the latter requires a cost optimization, per-pixel. In our experi-

ments, we use equation (A.19). Our Feature-Driven warp reversion process is thus used to warp the texture

image. Training data generation with a Feature-Driven warp is illustrated in figure A.7.

Image synthesis

Figure A.7: Generating training data with a Feature-Driven warp.

Learning. The residual vector is computed for the pixels of interest in R:

dj = ξR (I0 −Aj) . (A.21)

The training data are gathered in matrices D = (δ1 . . . δm) ∈ R|R|×m and L = (d1 . . . dm) ∈ R|R|×m. The

interaction matrix F ∈ R|R|×|R| is computed by minimizing a Linear Least Squares error in the image space,

expressed in pixel value unit, giving:

F =
(

LDT(DDT)−1
)†
. (A.22)

This is one of the two possibilities for learning the interaction matrix. The other possibility is dual. It mini-

mizes an error in the parameter space, i.e. expressed in pixels. The two approaches have been experimentally

A.5 FEATURE-DRIVEN WARPS 205

compared. Learning the interaction matrix in the image space give the best results. Thereafter, we use this

option.

A piecewise linear interaction function. Experiments show that a linear approximation of the relationship

between the local increment δ and the intensity discrepancy d, though computationally efficient, does not

always give satisfying results. The drawback is that if the interaction matrix covers a large domain of de-

formation magnitudes, the registration accuracy is spoiled. On the other hand, if the matrix is learned for

small deformations only, the convergence basin is dramatically reduced. Using a nonlinear interaction func-

tion learned through RVM or SVM partially solves this issue. We use a simple piecewise linear relationship

as interaction function. It means that we learn not only one but a series F1, . . . ,Fκ of interaction matrices,

each of them covering a different range of displacement magnitudes. The interaction function is thus of the

form f(d) =
∑κ

i=1 aiFi. More details are given in appendix A.7.

A.5 Feature-Driven Warps

In this section, we specialize the generic Feature-Driven parameterization presented in section A.3.1 for two

types of warps: the TPS and the FFD warps. Since the representational power of the TPS warp and of the FFD

warp are equivalent (see experiments in section A.6.1), we focused our experiments on the TPS warp. However,

it is important to show how the FFD warp can actually be used in the Feature-Driven framework. In particular,

we show how the standard FFD model can be extended in order to be compatible with the warp reversion

operation.

A.5.1 The Feature-Driven Thin-Plate Spline Warp

A.5.1.1 Definition

Ignoring the parameters, a TPS ω̄T is an R2 → R function. It is the Radial Basis Function that minimizes the

integral bending energy. In its natural parameterization, a TPS is driven by a set of l+3 weights p̄k ∈ R. These

weights are grouped in a vector of parameters p̄ ∈ Rl+3. The evaluation of a TPS at the point qT = (x y) is

given by:

ω̄T(q; p̄) =
l∑

i=1

p̄iρ
(
d2(q, ci)

)
+ p̄l+1x+ p̄l+2y + p̄l+3. (A.23)

The l 2D points ck are called the centers. They are also the driving features in the texture image. They can

be located at any place but, in practice, we place them on a regular grid. The function d2 gives the squared

euclidean distance between its two arguments. The function ρ is the TPS basis function and is defined by ρ(r) =

r2 log(r) for r > 0 and ρ(0) = 0. In matrix form, equation (A.23) is equivalent to:

ω̄T(q; p̄) = ℓTq p̄, (A.24)

with ℓTq =
(

ρ(d2(q, c1)) · · · ρ(d2(q, cl)) qT 1
)

∈ Rl+3.

Standard R2 → R2 TPS warps are obtained by replacing the scalar weights p̄i by the control points pk =

(pxk p
y
k) ∈ R2. The control points are grouped in a single matrix of parameters P ∈ R(l+3)×2 defined by PT =

(p1 . . . pl+3). The TPS warp is thus defined by:

ωT(q;p) = ℓTqP, with p = ν(P). (A.25)

206 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

A.5.1.2 Feature-Driven Parameterization

The Feature-Driven parameterization of the TPS warp consists in replacing the control points by some features

(i.e. points) in the current image. A point aTk = (axk ayk) ∈ R2 is assigned to each center ck defined in the

texture image. The features ak are grouped in a single matrix A ∈ Rl×2. Similarly, the centers ck are grouped

in a matrix C ∈ Rl×2. Following (Bookstein, 1989), the control points of a TPS can be determined from the

correspondences ck ↔ ak:

ωT(ck;p) = ak ∀k ∈ {1, . . . , l}, (A.26)

while enforcing the 3 ‘side-conditions’ ensuring that the TPS has square integrable second derivatives (more

details can be found in (Wahba, 1990)):

l∑

i=1

xipi = 02×1,
l∑

i=1

yipi = 02×1,
l∑

i=1

pi = 12×1. (A.27)

Combining these l + 3 conditions in a single matrix gives the following exactly determined linear system:

MλP =

(

A

03×1

)

, (A.28)

with Mλ ∈ R(l+3)×(l+3) the matrix defined by:

Mλ =

(

Nλ Q

QT 03×3

)

, (A.29)

with Nλ = N+λIl, N
T =

(
ℓTc1 · · · ℓTcl

)
and Q =

(

C 1l×1

)

∈ Rl×3. Adding λIl to N acts as a regularizer.

Determining the control points P from the equation (A.28) can be done in a straightforward manner as the

solution of an exactly determined linear system. The resulting matrix of control points, denoted Pλ, is a

nonlinear function of the regularization parameter λ and a linear function of the features A:

Pλ = M
−1
λ

(

A

03×1

)

. (A.30)

Pλ is a linear ‘back-projection’ of the feature matrix A. It can be computed efficiently using the blockwise

matrix inversion formulas:

Pλ = EλA (A.31)

with:

Eλ =

(

N
−1
λ

(
Il − Q

(
QTN

−1
λ Q

)
QTN

−1
λ

)

(
QTN

−1
λ Q

)−1
QTN

−1
λ

)

. (A.32)

This expression has the advantages of separating λ and A and introduces units: while Pλ has no obvious unit,

A in general has (e.g. pixels, meters). Finally, if we replace the natural parameters p in the definition of the

TPS warp ωT (equation (A.25)) by their expression given in the equation (A.32), we get the Feature-Driven

parameterization of the TPS warp, denotedWT:

WT(q;a, λ) = ℓTqEλA, with a = ν(A). (A.33)

A.5 FEATURE-DRIVEN WARPS 207

We use the notationWT(q;a) forWT(q;a, 10
−4). We choose λ = 10−4 to ensure good numerical conditioning

of the matrix Nλ.

Jacobian matrix of the warp. The Jacobian matrix of the warp is needed by the Gauss-Newton based algo-

rithms for local registration (see e.g. , section A.2.1 or section A.4.1). We denote KT the Jacobian matrix of the

TPS warp evaluated at the point q. It is defined by KT = ∂WT

∂a (q;a) ∈ R2×2(l+3) and is given by:

KT =

(
∂Wx

T

∂a (q;a)
∂Wy

T

∂a (q;a)

)

=

(
∂Wx

T

∂ax (q;a) 01×(l+3)

01×(l+3)
∂Wy

T

∂ay (q;a)

)

=

(

ℓTqEλ 01×(l+3)

01×(l+3) ℓTqEλ

)

, (A.34)

whereWx
T

andWy
T

are the first and the second coordinates of the warpWT and A = (ax ay).

A.5.2 The Feature-Driven Free-Form Deformation

Tensor-product B-Splines are a particular model of Free-Form Deformations. They are a general model of

polynomial functions which have been proved to be useful for image registration (Rueckert et al., 1999). Even

if there is a wide variety of B-Splines (with various degrees for the polynomial basis or by choosing exotic knot

sequences), we limit our study to the case of the Uniform Cubic B-Splines since it best matches the needs of

image registration. For the sake of simplicity, we will abbreviate it FFD.

A.5.2.1 Definition

Monodimensional case. Ignoring the parameters, a monodimensional FFD ω̄F is an R→ R function defined

as a linear combination of the basis functions Ni weighted by the scalars p̄k called the weights:

ω̄F(x; p̄) =
m∑

i=1

p̄iNi(x), (A.35)

where p̄ ∈ Rm is the vector that contains all the weights p̄k. The basis functions are defined using a knot

sequence, i.e. a non-decreasing sequence k1 < . . . < km+4. The FFD is said to be uniform when the knot

sequence is uniform, i.e. all the knot intervals [ki, ki+1] have the same length s. In this case, the basis func-

tions Ni are defined by using four polynomials of degree three, the blending functions (see figure A.8(a) for an

illustration):

Ni(x) =

b1(x) =
1
6 x̂

3

if x ∈ [ki, ki+1]

b2(x) =
1
6

(
−3x̂3 + 3x̂2 + 3x̂+ 1

)

if x ∈ [ki+1, ki+2]

b3(x) =
1
6

(
3x̂3 − 6x̂2 + 4

)

if x ∈ [ki+2, ki+3]

b4(x) =
1
6

(
−x̂3 + 3x̂2 − 3x̂+ 1

)

if x ∈ [ki+3, ki+4]

0 otherwise

(A.36)

where x̂ is the normalized abscissa of x defined as x̂ = x−kI
s for x ∈ [kI , kI+1].

208 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Domain. We can see from equation (A.35) that an FFD is non-zero only over the interval [k1, km+4]. However,

it is common practice to reduce the domain to [k4, km+1]. By doing so, there are always exactly 4 non-zero

basis functions on each knot interval, as figure A.8(b) illustrates.

(a) (b)

Figure A.8: (a) The basis functions of an FFD are bell-shaped curves with bounded support. They are defined using 4 poly-

nomial pieces of degree three: b1, b2, b3 and b4. (b) The usual (or natural) definition domain of an FFD is represented by the

non-grayed part.

FFD warp. The standard R2 → R2 FFD warp is obtained as the two-way tensor-product of monodimen-

sional FFDs. Using its natural parameterization, the evaluation of the FFD warp ωF at the point q = (x y)T is

given by:

ωF(q;p) =
n∑

j=1

m∑

i=1

pkNi(x)Nj(y), with k = (j − 1)m+ i. (A.37)

The mn control points pk are grouped in the vector p ∈ R2mn that is defined as p = ν(P) where P ∈ Rmn×2

is the matrix given by PT = (p1 . . . pmn). The control points of an FFD warp are not more meaningful than

the ones of a TPS warp. They are not interpolated: they just act as ‘attractors’ to the warp. Equation (A.37) can

be rewritten in matrix form:

ωF(q;p) = ℓTqP, (A.38)

where ℓq ∈ Rmn is the vector defined by:

ℓTq = (N1(x)N1(y) . . . Nm(x)N1(y) . . . Nm(x)Nn(y)) . (A.39)

A.5.2.2 Feature-Driven Parameterization

The Feature-Driven parameterization of the FFD warp is similar to the one of the TPS warp in the sense that it

makes the warp driven by features expressed in pixels in both the texture and the current images. The centers

of the TPS warp were used as features in the texture image. Such centers do not exist for FFD warps. We thus

introduce a set of points ck that will be used as features in the texture image. We call these points centers

for consistency with the TPS warps. We use l = mn centers located on a regular grid. A feature ak in the

current image is associated to every center ck. The control points p of the FFD warp can be determined from

the correspondences ck ↔ ak by enforcing the following constraints:

ωF(ck;p) = ak, ∀k ∈ {1, . . . , l}. (A.40)

A.5 FEATURE-DRIVEN WARPS 209

Since the number of features is equal to the number of degrees of freedom of the FFD warp, the determination

of the parameters from the features can be carried out with an exactly determined linear system:

MP = A, (A.41)

with MT =
(

ℓc1 . . . ℓcl

)

∈ Rl×l, P = ζ(p) ∈ Rl×2 and AT = (a1 . . . amn) ∈ R2×l. The solution of

the linear system of equation (A.41) can be written P = EA where E = M−1. The existence of the matrix E is

guaranteed if the Schoenberg-Whitney conditions are satisfied (see (de Boor, 2001)) as it is the case when the

centers are located on a regular grid. Note that the matrix E can be pre-computed. Finally, the Feature-Driven

parameterization of the FFD warp, denotedWF, is given by replacing the natural parameters p in equation (A.38)

with their expression in function of the features a = ν(A) ∈ R2l:

WF(q;a) = ℓTqEA. (A.42)

Jacobian matrix of the warp. The Jacobian matrix KF ∈ R2×2l for FFD warps can be computed following

exactly the same reasoning as for the TPS warp:

KF =

(
∂Wx

F

∂a (q;a)
∂Wy

F

∂a (q;a)

)

=

(
∂Wx

F

∂ax (q;a) 01×l

01×l
∂Wy

F

∂ay (q;a)

)

=

(

ℓTqE 01×l

01×l ℓTqE

)

. (A.43)

A.5.2.3 Extrapolation

The computations involved in the warp reversion operation (see section A.3.3) can lead to evaluate a warp

outside of its natural definition domain. More precisely, in equation (A.11), nothing ensures that the features

of the vector v lies in the domain of the warp. While this is not a problem with the TPS warp whose domain

is infinite, extra work need to be done with the FFD warp. Indeed, with the previous definition, it is possible to

evaluate an FFD warp outside of its natural domain but it is meaningless since it collapses to 0. In this section,

we propose a new method to extrapolate an FFD warp outside of its domain making it virtually infinite.

The principle of the method is simple: a linear extension is added to the basis that crosses the boundaries of

the domain (with some extra conditions of continuity and differentiability). While this seems almost trivial in

the monodimensional case, it is less simple in two dimensions, i.e. for warps. Our strategy consists in defining

the extension in 1D and, then, propagate it to the 2D case using the usual tensor-product.

We present the extrapolation approach in the monodimensional case and for the leftmost boundary of the

domain (i.e. , the knot k4). The four non-zero bases that cross this boundary are N1, N2, N3 and N4. Our idea

is to drop the part of these bases that are outside the domain and to replace them with a linear extension. We

callN e
1 ,N e

2 ,N e
3 andN e

4 the bases resulting from this process. In addition to be linear, we enforce the following

constraints in order to preserve continuity and differentiability:

N e
i (k4) = Ni(k4)

∂N e
i

∂x
(k4) =

∂Ni

∂x
(k4)

∀i ∈ 1, . . . , 4. (A.44)

For the sake of simplicity and without loss of generality, we consider that the leftmost boundary coincides with

zero (k4 = 0) and that the length of the knot intervals is consistently one (s = 1). Under all these constraints,

210 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

it follows that:

N e
1 (x) =

−x
2
+

1

6
if x ∈ (−∞, 0]

N1(x) otherwise

N e
2 (x) =

2

3
if x ∈ (−∞, 0]

N2(x) otherwise

N e
3 (x) =

x

2
+

1

6
if x ∈ (−∞, 0]

N3(x) otherwise

N e
4 (x) =

0 if x ∈ (−∞, 0]
N4(x) otherwise

The extended basis for the rightmost boundary are obtained by symmetry. Figure A.9 illustrates the result-

ing extended basis functions. The twodimensional counterparts of these newly defined extended basis functions

are obtained using the tensor-product.

(a) (b)

Figure A.9: (a) Standard basis functions. (b) Extended basis functions that allow one to extrapolate outside the natural

domain [k4, km+1].

The proposed extension gives a remarkably good behavior to the extrapolating functions. See figure A.10

and figure A.11 for an illustration in 1D and 2D respectively. Besides, the fact that the basis functions form a

partition of unity remains true (
∑4

i=1N
e
i (x) = 1, ∀x ∈ (−∞, 0]).

A.6 Experimental Results

A.6.1 Representational Similarity of the TPS and FFD Warps

This first set of experiments is designed to compare the TPS and the FFD warp. In the light of these experiments,

we believe that a fair conclusion is that the TPS and the FFD warp have the same order of representational power.

This motivates our choice to only consider the TPS warp in the other experiments of this article.

Fitting error from point correspondences. The experimental setup is as follows. We synthesize a set of

point correspondences qk ↔ ak. The points qk in the first image are taken as the nodes of a regular grid of

size 11 × 11 over the domain [−1, 1] × [−1, 1]. These points are randomly and independently moved (with a

given average magnitude γ) in order to build the corresponding points ak in the second image. A TPS and an

FFD warp are then estimated from the point correspondences. The initial data points ak and the warped ones

A.6 EXPERIMENTAL RESULTS 211

Figure A.10: Examples of our extrapolating FFD in the monodimensional case. The extrapolating parts are represented with

dashed lines.

Figure A.11: Examples of our extrapolating FFD warp. The dark part of the meshes represents the warp over its initial domain

while the light part is extrapolated.

212 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

are compared using the fitting error defined by:

1

n

n∑

i=1

d (ai,W(qi)) , (A.45)

whereW represents the estimated warp (either TPS or FFD) and d the euclidean distance. Note that the fitting

error is expressed in the same unit as the points of the second image. The results are shown in figure A.12 for

different displacement magnitudes. The reported values are obtained as the average over 500 trials. The fitting

errors and the displacement magnitudes are expressed in percentage of the domain size. We can see that the

curves in figure A.12 are almost identical. It means that none of the two considered warps prevails the other

one ; they can model equally the point correspondences. Note also that the fitting error collapses to zero when

the number of centers is the same as the number of point correspondences.

16 25 36 49 64 81 100 121
0

2.5

5

7.5

10

Number of centers

F
it

ti
n

g
 e

rr
o

r
(%

)

TPS
FFD

(a) γ = 10%

16 25 36 49 64 81 100 121
0

2.5

5

7.5

10

12.5

15

17.5

20

Number of centers

F
it

ti
n

g
 e

rr
o

r
(%

)

TPS
FFD

(b) γ = 20%

16 25 36 49 64 81 100 121
0

5

10

15

20

25

30

Number of centers
F

it
ti

n
g

 e
rr

o
r

(%
)

TPS
FFD

(c) γ = 30%

Figure A.12: Fitting error between the synthesized data points and the points warped with the estimated TPS and FFD warps

(γ is the average displacement magnitude.)

Direct comparison of the warps. This second experiment differs from the first one in the sense that the point

correspondences are not generated randomly. First, a TPS warp is generated with randomly determined driving

features vT. The centers of this TPS warp are taken on an n × n regular grid over the domain Ω = [−1, 1] ×
[−1, 1]. The generated driving features vT are produced by moving the centers around their initial location

with an average magnitude γ. Second, a set of point correspondences is synthesized by sampling the TPS warp:

qk ↔ ak = WT(qk;vT). Third, the features vF of an FFD warp are determined from the previously generated

point correspondences. Finally, the TPS and the FFD warps are compared using the following measure:

∫∫

Ω
‖WT(q;vT)−WF(q;vF)‖ dq. (A.46)

The unit of this error measure is the same as the one of the points in the second image. The results are presented

in figure A.13. Figure A.14 are the results obtained with the same experimental setup except that the roles of

the TPS and the FFD warps have been switched. The reported errors are computed by averaging over 200 trials.

These errors are expressed in percentage of the domain size.

Figure A.13 tells us that given a TPS warp, it is possible to closely approximate the same deformations with

an FFD warp. Conversely, the deformations induced by an FFD warp can also be closely approximated by a TPS

warp (figure A.14).

Comparison of the TPS and FFD warps induced by the same driving features. Since the parameters in the

Feature-Driven framework are meaningful to the warp (i.e. they are interpolated by the warps), we can compare

A.6 EXPERIMENTAL RESULTS 213

16 25 36 49 64 81 100 121
1.25

1.5

1.75

2

2.25

2.5

2.75

3

Number of centers

E
rr

o
r

(%
)

(a) γ = 10%

16 25 36 49 64 81 100 121
2.5

3

3.5

4

4.5

5

5.5

6

Number of centers

E
rr

o
r

(%
)

(b) γ = 20%

16 25 36 49 64 81 100 121
4

4.5

5

5.5

6

6.5

Number of centers

E
rr

o
r

(%
)

(c) γ = 30%

Figure A.13: Error between the FFD and the TPS warps. The FFD warp is estimated from point correspondences that comes

from the TPS warp (γ is the displacement magnitude).

16 25 36 49 64 81 100 121
1.25

1.5

1.75

2

2.25

2.5

2.75

3

Number of centers

E
rr

o
r

(%
)

(a) γ = 10%

16 25 36 49 64 81 100 121
2.5

3

3.5

4

4.5

5

5.5

6

Number of centers

E
rr

o
r

(%
)

(b) γ = 20%

16 25 36 49 64 81 100 121
4

4.5

5

5.5

6

6.5

Number of centers

E
rr

o
r

(%
)

(c) γ = 30%

Figure A.14: Error between the TPS and the FFD warps. The TPS warp is estimated from point correspondences that come

from the FFD warp (γ is the displacement magnitude).

the TPS and the FFD warps with the same set of driving features. In this experiment, we randomly generate

some driving features with their associated centers. We then compare the TPS and the FFD warps resulting from

these features using the same measure as in the previous experiment. Figure A.15 shows the results for different

magnitude of transformation. The reported numbers are obtained as the average over 200 trials.

16 25 36 49 64 81 100 121
2

2.25

2.5

2.75

3

Number of centers

E
rr

o
r

(%
)

(a) γ = 10%

16 25 36 49 64 81 100 121
4

4.5

5

5.5

6

Number of centers

E
rr

o
r

(%
)

(b) γ = 20%

16 25 36 49 64 81 100 121
6.5

7

7.5

8

8.5

9

Number of centers

E
rr

o
r

(%
)

(c) γ = 30%

Figure A.15: Comparison of the TPS and of the FFD warps resulting from a common set of driving features (γ is the displacement

magnitude).

The values of the errors and the displacement magnitudes in figure A.15 are expressed in percentage of the

domain size. We can see from figure A.15 that TPS and FFD warps induced from the same set of features are

close to each other.

214 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

A.6.2 Comparison of Registration Algorithms

In this second set of experiments, we compare four algorithms in terms of convergence frequency, accuracy and

convergence rate:

• Two classical algorithms:

– FA-GN : the Forward Additive Gauss-Newton approach used by (Bartoli and Zisserman, 2004;

Lim and Yang, 2005) and described in section A.2.1.

– FA-ESM : the Efficient Second-order approximation of the cost function proposed by (Benhimane

and Malis, 2004) and reviewed in section A.2.1 with an additive update of the parameters4.

• Two algorithms we propose:

– IC-GN : the Feature-Driven Inverse Compositional registration of section A.3 with Gauss-Newton

as local registration engine as described in section A.4.1.

– FC-LE : the Feature-Driven Forward Compositional registration of section A.3, with local regis-

tration achieved through learning as described in section A.4.2.

A.6.2.1 Simulated Data

In order to assess algorithms in different controlled conditions, we synthesized images from a texture image.

The driving features are placed on a 3× 3 grid, randomly perturbed with magnitude r. We add Gaussian noise,

with variance σ% of the maximum greylevel value, to the warped image. An example of such generated data

is shown in figure A.16. We vary each of these parameters independently, using the following default values:

r = 2 pixels and σ = 1%. The estimated warps are scored by the mean Euclidean distance between the

driving features which generated the warped image, and the estimated ones. Convergence to the right solution

is declared if this score is lower than one pixel. The characteristics we measured are:

• Convergence frequency. This is the percentage of convergence to the right solution.

• Accuracy. This is the mean residual error over the trials for which an algorithm converged.

• Convergence rate. This is defined by the number of iterations required to converge.

The results are averages over 500 trials. Note that, in this section, the elements in the legend of each figure are

ordered according to their performance (from best to worst).

Convergence frequency. The results are shown in figure A.17. FC-LE has the largest convergence basin

closely followed by FA-ESM. IC-GN has the smallest convergence basin. At a displacement magnitude of 8

pixels, the convergence frequency of FC-LE is around 75% whereas it is near only 40% for FA-GN and IC-

GN. FA-GN has the worst performances against noise. The other algorithms are almost unaffected by noise.

Accuracy. The results are shown in figure A.18. The four algorithms are equivalent against the displacement

magnitude. Concerning the amplitude of the noise, IC-GN and FC-LE are equivalent while FA-ESM is

slightly worse and FA-GN clearly worse. For example, at 6% noise, the registration errors of IC-GN and

FC-LE are around 0.2 pixels, FA-ESM is at about 0.25 pixels and FA-GN at 0.35 pixels.

4The original ESM algorithm uses a compositional update. The Feature-Driven framework naturally extends it to non-rigid warps.

A.6 EXPERIMENTAL RESULTS 215

(a) (b)

Figure A.16: An example of simulated data. (a) The texture image. (b) The warped image with gaussian noise added (using

σ = 5% and r = 8 pixels).

0 5 10 15
0

0.2

0.4

0.6

0.8

1

Displacement magnitude (pixels)

C
o

n
ve

rg
en

ce
 f

re
q

u
en

cy

FC−Le
FA−ESM
FA−GN
IC−GN

(a)

C
on

ve
rg

en
ce

 fr
eq

ue
nc

y

Noise amplitude (%)

FC-Le
FA-ESM
FA-GN

IC-GN

Noise amplitude (%)

C
on

ve
rg

en
ce

 fr
eq

ue
nc

y

0 5 10 15

0.95

0.9

0.85

0.8

0.75

0.7

0.65

1

(b)

Figure A.17: Comparison of the four algorithms in terms of convergence frequency against displacement magnitude (a) and

noise amplitude (b).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

Displacement magnitude (pixels)

A
lig

n
m

en
t

er
ro

r
(p

ix
el

s)

FC−Le
FA−ESM
FA−GN
IC−GN

(a)

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

Noise amplitude (%)

A
lig

n
m

en
t

er
ro

r
(p

ix
el

s)

IC−GN
FC−Le
FA−ESM
FA−GN

(b)

Figure A.18: Comparison of the four algorithms in terms of accuracy against displacement magnitude (a) and noise amplitude

(b).

216 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Convergence rate. The results are shown in figure A.19. The convergence rate of FC-LE and FA-ESM are

almost constant against both displacement and noise amplitude. However FC-LE does better, with a conver-

gence rate kept below 10 iterations. FA-GN and IC-GN are efficient for small displacements, i.e. below 5

pixels. The convergence rate increases dramatically beyond this value for both of them. FA-GN is also inef-

ficient for noise amplitude over 4%. This is explained by the fact that the FA-GN Jacobian matrix depends

mainly on the current image gradient, onto which the noise is added.

0 2 4 6 8 10
0

10

20

30

40

Displacement magnitude (pixels)

C
o

n
ve

rg
en

ce
 r

at
e

FC−Le
FA−ESM
FA−GN
IC−GN

(a)

0 2 4 6 8 10
0

5

10

15

20

25

Noise amplitude (%)
C

o
n

ve
rg

en
ce

 r
at

e

FC−Le
IC−GN
FA−ESM
FA−GN

(b)

Figure A.19: Comparison of the four algorithms in terms of convergence rate against displacement magnitude (a) and noise

amplitude (b).

Discussion. This set of experiments on synthetic data shows that the proposed algorithms, i.e. FC-LE and

IC-GN, are always the best ones in the presence of noise. FC-LE also obtains the best performances against

the displacement magnitude. However, the standard algorithms, i.e. FA-ESM and FA-GN, performs better

than IC-GN for important displacement magnitudes.

A.6.2.2 Real Data

The four above described algorithms have been compared on several image sequences. We show results for

four such videos5. We measured the average and maximum intensity RMS along the sequence, the total number

of iterations and the computational time (expressed in seconds). The RMS is expressed in pixel value unit. Note

that the RMS is computed on the pixels of interest, i.e. the pixels actually used in the registration algorithms

themselves. All algorithms have been implemented in Matlab. In order to illustrate the registration, we defined

a mesh on the texture image and transferred it to all the other frames. Note that these meshes are different from

the estimated driving features. The registration differences between the four algorithms are generally visually

indistinguishable when they converge.

The first T-shirt sequence. This sequence has 400 frames. The displacement magnitude between the frames

may be important. The driving features of the warp are placed on a 3 × 3 grid. Results are given in table A.3

and registration for the FC-LE algorithm shown in figure A.20. FC-LE performs well on this sequence. It is

the fastest and the most accurate. FA-GN, FA-ESM and IC-GN are quite equivalent in terms of alignment

accuracy. FA-GN needs a lot of iterations, making it 5 times slower than FC-LE.

The paper sequence. This sequence has 350 frames. The driving features of the warp are placed on a 4× 4

grid. The results are given in table A.4 and registration for the FC-LE algorithm shown in figure A.21. IC-GN

5These videos can be downloaded at http://www.florentbrunet.com/ijcv2010.

A.6 EXPERIMENTAL RESULTS 217

Mean/max RMS # Iteration Total/mean time

FA-GN 8.70/13.67 9057 2083/5.2

FA-ESM 9.23/14.77 3658 877/2.2

IC-GN 9.69/15.82 6231 436/1.1

FC-LE 6.66/12.87 3309 380/0.95

Table A.3: Results for the first T-shirt sequence. Bold indicates best performances.

Figure A.20: Registration results for FC-LE on the first T-shirt sequence.

diverges when the deformation seems to be the most important. The other algorithms have similar alignment

performances, FA-GN being slightly better. FC-LE is however 3 times faster than the other algorithms.

Mean/max RMS # Iteration Total/mean time

FA-GN 8.98/17.57 2422 532/1.5

FA-ESM 10.22/20.49 2473 560/1.6

FC-LE 9.44/19.4 1330 176/0.5

Table A.4: Results for the paper sequence. The IC-GN algorithm diverges on this sequence. Bold indicates best performances.

The rug sequence. This short sequence has 42 frames. The displacement magnitude is high. The driving

features of the warp are placed on a 5×5 grid. The results are given in table A.5 and registration for the FC-LE

algorithm shown in figure A.22. As for the paper sequence, IC-GN diverges. FA-GN and FA-ESM give the

most accurate alignment, FC-LE being slightly worse. On the other hand it is 7 times faster.

The second T-shirt sequence. This sequence has 623 frames. Deformations are moderate, but there are

strong global illumination variations along the sequence. The driving features of the warp are placed on a

3 × 3 grid. The results are given in table A.6 and registration results for the FC-LE algorithm shown in

figure A.23. The registration is well achieved by the four algorithms. The small residual error shows that the

global illumination changes are correctly compensated. FC-LE and IC-GN are respectively 4 and 2 times

faster than the classical algorithms.

Discussion. FA-GN is the most accurate algorithm. It is however inefficient, especially for important dis-

placements. FA-ESM has almost similar performances compared to the FA-GN while being slightly more

efficient. IC-GN is efficient, but looses effectiveness for high displacements. As for the experiments with

synthetic data, FC-LE has the best behavior: it is similar to FA-GN for accuracy while being 5 times faster on

average and is equivalent or better than IC-GN and FA-ESM in terms of alignment accuracy, computational

cost and has a larger convergence basin.

218 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

Figure A.21: First row: the paper sequence. Second row: registration results for FC-LE. Third row: surface augmentation

with the Walt Disney character Stitch. Fourth row: deformations are captured and applied on a poster of the Walt Disney movie

Cars.

Figure A.22: Registration results for FC-LE on the rug sequence.

A.7 CONCLUSIONS 219

Mean/max RMS # Iteration Total/mean time

FA-GN 5.64/8.21 538 118/2.8

FA-ESM 5.79/8.63 477 109/2.6

FC-LE 6.45/9.80 149 17.13/0.4

Table A.5: Results for the rug sequence. The IC-GN algorithm diverges on this sequence. Bold indicates best performances.

Mean/max RMS # Iteration Total/mean time

FA-GN 4.51/7.42 3408 785/1.25

FA-ESM 4.53/7.49 3268 788/1.25

IC-GN 4.87/7.61 4407 381/0.61

FC-LE 4.61/7.70 1757 247/0.39

Table A.6: Results for the second T-shirt sequence. Bold indicates best performances.

A.7 Conclusions

We addressed an important issue for the problem of non-rigid registration. We proposed the Feature-Driven

framework, relaxing the groupwise requirement for using efficient compositional algorithms such Inverse Com-

positional and Learning-Based algorithms. We also explained in details the Feature-Driven parameterization

for the TPS and the FFD warps. Experiments show that Feature-Driven algorithms are more efficient compared

to classical ones with additive update of the parameters. Overall, the best algorithm is the combination of

the Feature-Driven framework, the Forward Compositional update of the parameters and the local registration

based on Learning. The proposed algorithms make foreseeable accurate real-time surface registration.

Acknowledgements. We would like to thank Selim Benhimane for his useful advice, in particular for propos-

ing the Gaussian Mixture Model in order to select the weights of the interaction matrices in the piecewise linear

model used in the learning-based local registration.

Appendix: Learning-based Registration with a Piecewise Linear Model

A.7.1 Framework

Learning-based registration algorithms such as (Cootes et al., 1998; Jurie and Dhome, 2002) use a linear model

i.e. a single interaction matrix. It has several drawbacks: if this interaction matrix covers a large domain of

deformation magnitudes, registration accuracy is spoiled. On the other hand, if the matrix is learned for small

deformations only, the convergence basin is dramatically reduced. We propose to learn a series F1, . . . ,Fκ of

interaction matrices, each of them covering a different range of displacement magnitudes. This forms a piece-

Figure A.23: Registration results for FC-LE on the second T-shirt sequence.

220 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

wise linear approximation to the true relationship. Experiments show that using a piecewise linear relationship

solves these issues. We propose several ways to combine the interaction matrices {Fi}κi=1, that yield different

piecewise linear relationships.

Trivial combination. One possibility is to apply all the matrices in turn (algorithm LOOP). The interaction

matrix F1 is first applied until convergence. Then, the other matrices {Fi}κi=2 are used one after the other. The

last matrix Fκ, learned on the smallest displacement, ensures accuracy. The drawback is that all the matrices

are used even for small displacements. It yields a dramatically high number of iterations to converge. Another

approach is to try all the linear relationships at each iteration. The one resulting in the smallest residual error is

kept (algorithm BEST). These piecewise linear relationships appear not to be the most discerning choice since

they are not efficient. In fact, LOOP implies a large convergence rate whereas BEST yields high computational

cost per iteration. They are less efficient when the number of interaction matrices κ increases.

Statistical map selection. Our goal is to select the most appropriate interaction matrix at each iteration (algo-

rithm PROB). Each of those indeed has a specific domain of validity in the displacement magnitude. This can

unfortunately not be determined prior to image registration. We thus propose to learn a relationship between

the intensity error magnitude and displacement magnitude intervals. We express this relationship in terms of

probabilities. The intensity error magnitude for a residual vector d is defined as its RMS: e(d) = rms(d).

Experimentally, we observed that P (Fi|e(d)) closely follows a Gaussian distribution, see figure A.24.

5 10 15 20 25
0

200

400

600

800

Intensity error (pixels)

N
u

m
b

er
 o

f
tr

ai
n

in
g

 s
am

p
le

s

(a)

10 20 30 40 50
0

200

400

600

800

intensity error (pixels)

N
u

m
b

er
 o

f
tr

ai
n

in
g

 s
am

p
le

s

(b)

Figure A.24: Distribution of the intensity error magnitude for two different perturbation intervals: (a) [2 . . . 5] and (b) [7 . . . 13]
pixels, respectively.

Given the current intensity error e(d), finding the most appropriate interaction matrix Fs is simply achieved

by solving:

s = argmax
t
P (Ft|e(d)). (A.47)

Mixture models. We use an interaction matrix given by:

F←
κ∑

i=1

aiFi with

κ∑

i=1

ai = 1, (A.48)

where {ai}κi=1 are the mixture proportions.

We compare two mixture models with different probability distributions:

• a Gaussian Mixture Model (GMM): ai =
P (Fi|e(d))∑κ

k=1 P (Fk|e(d)) , where P (Fi|e(d)) follows a Gaussian distri-

bution;

A.7 CONCLUSIONS 221

• a Constant Mixture Model (CMM): ai =
1
κ .

For all the piecewise linear relationships described above6, the interaction matrix Fκ is applied for the last

two iterations. This additional step ensures accuracy.

A.7.2 Experimental Results

We use a simple homographic warp to guarantee a fair comparison7 between the five piecewise linear relation-

ships. The setup described in section A.6.2.1 is used.

Convergence frequency. The results are shown in figure A.25. The five piecewise linear relationships have

similar convergence basins. Their convergence frequency are over 95% and around 65% at a displacement

magnitude of 20 pixels and 25 pixels respectively. CMM seems to have a slightly thiner convergence basin.

GMM and PROB are quite sensitive to noise. It corrupts the probability distributions learned off-line. GMM is

slightly better than PROB: at a noise magnitude of 7% the convergence frequency of PROB is only 80% whereas

GMM always converges. CMM, BEST and LOOP are insensitive to noise.

0 5 10 15 20 25

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Displacement magnitude (pixels)

C
o

n
ve

rg
en

ce
 f

re
q

u
en

cy

LOOP
PROB
GMM
BEST
CMM

(a)

5 10 15
0

0.2

0.4

0.6

0.8

1

Noise amplitude (%)

C
o

n
ve

rg
en

ce
 f

re
q

u
en

cy

CMM
LOOP
BEST
GMM
PROB

(b)

Figure A.25: Comparison of the five piecewise linear relationships in terms of convergence frequency against displacement

magnitude (a) and noise amplitude (b). On graph (b), CMM and LOOP are indistinguishable.

Accuracy. The results against displacement magnitude are similar for the five piecewise linear relationships.

The associated graph is thus not shown. The residual error is around 0.025 pixels for all tested magnitudes.

GMM and PROB are less accurate against noise beyond an amplitude of 7% and 9% respectively than the other

piecewise linear relationships. This is illustrated in figure A.26(b). Their residual errors are approximately

0.7 pixels against 0.3 pixels for CMM, BEST and LOOP (i.e. , a 2.5 ratio).

Convergence rate. The results are shown in figure A.26(a). BEST and LOOP are clearly not efficient against

displacement magnitude: LOOP needs at least 30 iterations to converge while BEST requires 10 iterations with

high computational cost. CMM, GMM and PROB do better with a convergence rate kept below 10. Convergence

rates for the five piecewise linear relationships are similar against noise magnitude. The associated graph is thus

not shown.

Discussion. Overall, CMM is the best piecewise relationship. It is much more efficient than LOOP and BEST

and unaffected by noise contrary to CMM and PROB. Its convergence basin is only slightly smaller than those

6Except LOOP which naturally includes this additional step.
7The compositional update of the warp is not approximated since an homography belongs to a group.

222 Chapter A. FEATURE-DRIVEN DIRECT NON-RIGID IMAGE REGISTRATION

5 10 15 20 25
0

10

20

30

40

Displacement magnitude (pixels)

C
o

n
ve

rg
en

ce
 r

at
e

GMM
PROB
CMM
BEST
LOOP

(a)

5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

Noise amplitude (%)

A
lig

n
m

en
t

er
ro

r
(p

ix
el

s)

CMM
LOOP
BEST
PROB
GMM

(b)

Figure A.26: (a) Comparison of the five piecewise linear relationships in terms of convergence rate against displacement

magnitude. (b) Comparison of the five piecewise linear relationships in terms of accuracy against noise amplitude.

induced by the other relationships. We use the CMM piecewise linear relationship in the experiments of sec-

tion A.6.2.

BIBLIOGRAPHY 223

Bibliography

A. Agarwal and B. Triggs. Recovering 3D human pose from monocular images. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 28(1), January 2006.

H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19:

716–723, 1974.

D. Allen. Mean square error of prediction as a criterion for selecting variables. Technometrics, 13:469–475,

1971.

J. Aloimonos. Shape from texture. Biological Cybernetics, 58:345–360, 1988.

S. Aouadi and L. Sarry. Accurate and precise 2D-3D registration based on X-ray intensity. Computer Vision

and Image Understanding, 110:134–151, 2008.

S. Arlot and A. Celisse. A survey of cross-validation procedures for model selection. Statistics Surveys, 4:

40–79, 2010.

K. V. Arya, P. Gupta, P. K. Kalra, and P. Mitra. Image registration using robust M-estimators. Pattern Recog-

nition Letters, 28:1957–1968, 2007. ISSN 0167-8655.

M. Avriel and D.J. Wilde. Optimality proof for the symmetric fibonacci search technique. Fibonacci Quarterly,

4:265–269, 1966.

S. Baker, R. Gross, and I. Matthews. Lucas-Kanade 20 years on: A unifying framework. International Journal

of Computer Vision, 56:221–255, 2004.

B. Bartczak, I. Schiller, C. Beder, and R. Koch. Integration of a Time-of-Flight camera into a mixed reality

system for handling dynamic scenes, moving viewpoints and occlusions in real-time. 3D Data Processing,

Visualization and Transmission, 2008.

A. Bartoli. Groupwise geometric and photometric direct image registration. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 30(12):2098–2108, December 2008a.

A. Bartoli. Maximizing the predictivity of smooth deformable image warps through cross-validation. Journal

of Mathematical Imaging and Vision, 31(2-3):133–145, 2008b.

A. Bartoli. Contributions to Image Registration and to the 3D Reconstruction of Rigid and Deformable Scenes

(Habilitation à diriger des recherches). PhD thesis, LASMEA UMR6602 - Université Blaise Pascal (Cler-

mont 2), 2008c.

224 BIBLIOGRAPHY

A. Bartoli and P. Sturm. The 3D line motion matrix and alignment of line reconstruction. International Journal

of Computer Vision, 15:501–517, 2004.

A. Bartoli and P. Sturm. Structure-from-motion using lines: Representation, triangulation and bundle adjust-

ment. Computer Vision and Image Understanding, 100:416–441, 2005.

A. Bartoli and A. Zisserman. Direct estimation of non-rigid registrations. British Machine Vision Conference,

2004.

A. Bartoli, V. Gay-Bellile, U. Castellani, J. Peyras, S.I. Olsen, and P. Sayd. Coarse-to-fine low-rank structure-

from-motion. IEEE International Conference on Computer Vision and Pattern Recognition, 2008.

A. Bartoli, M. Perriollat, and S. Chambon. Generalized thin-plate spline warps. International Journal of

Computer Vision, 88:85–110, 2010.

H. Bay, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. European Conference on Computer

Vision, 2006.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. SURF: Speeded up robust features. Computer Vision and

Image Understanding, 110:346–359, 2008.

S. Benhimane and E. Malis. Real-time image-based tracking of planes using efficient second-order minimiza-

tion. Proceedings of the International Conference on Intelligent Robots and Systems, 2004.

Å. Björck. Numerical Methods for Least Squares Problems. Society for Industrial and Applied Mathematics,

1996.

A. Blake and A. Zisserman. Visual Reconstruction. MIT Press, 1987.

F. L. Bookstein. Principal warps: Thin-plate splines and the decomposition of deformations. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989. ISSN 0162-8828.

S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Y. Boykov, O. Veksler, and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 23:1222–1239, 2001.

J. De Brabanter, K. Pelckmans, J. Suykens, J. Vandewalle, and B. De Moor. Robust cross-validation score

functions with application to weighted least squares support vector machine function estimation. Technical

report, Katholieke Universiteit Leuven, 2003.

M. Brand. A direct method for 3D factorization of nonrigid motion observed in 2D. IEEE International

Conference on Computer Vision and Pattern Recognition, 2005.

C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape from image streams. IEEE

International Conference on Computer Vision and Pattern Recognition, pages 2690–2696, 2000.

F. Brunet. Convolutions binomiales et dérivation de fonctions discrètes bruitées. Master’s thesis, Université

Blaise Pascal, 2007.

F. Brunet, A. Bartoli, R. Malgouyres, and N. Navab. L-Tangent Norm: A low computational cost criterion for

choosing regularization weights and its use for range surface reconstruction. 3D Data Processing, Visualiza-

tion and Transmission, 2008.

BIBLIOGRAPHY 225

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Ajustement automatique de surfaces paramétriques

sur données de profondeur en présence d’un bruit hétérogène. Actes des journées COmpression et

REprésentation des Signaux Audiovisuels, Mars 2009a.

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Nurbs warps. British Machine Vision Conference, 2009b.

F. Brunet, A. Bartoli, J. Peyras, N. Navab, and R. Malgouyres. Découverte automatique de la région d’intérêt

en recalage d’images direct. Actes du onzime congrs francophone des jeunes chercheurs en vision par

ordinateur, 2009c.

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Utilisation de l’information photométrique pour la

sélection des hyperparamètres en recalage géométrique d’images. Compression et reprsentation des sig-

naux audiovisuels, 2010a.

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Pixel-based hyperparameter selection for feature-based

image registration. Vision, Modeling and Visualization Workshop, 2010b.

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Dcouverte automatique du recouvrement en recalage

direct d’images. Reconnaissance des Formes et Intelligence Artificielle, 2010c.

F. Brunet, A. Bartoli, N. Navab, and R. Malgouyres. Direct image registration without region of interest. Vision,

Modeling and Visualization Workshop, 2010d.

F. Brunet, R. Hartley, A. Bartoli, N. Navab, and R. Malgouyres. Monocular template-based reconstruction of

smooth and inextensible surfaces. Proceedings of the Tenth Asian Conference on Computer Vision (ACCV),

Queenstown (New Zealand), November 2010e.

R. Burachik, L. Mauricio, G. Drummond, A.N. Iusem, and E.D. Castorina. Full convergence of the steepest

descent method with inexact line searches. Optimization, 32:137–146, 1996.

K. Burnham and D. Anderson. Multimodel inference: Understanding AIC and BIC in model selection. Socio-

logical Methods Research, 33(2):261–304, 2004.

N. Carlson. NURBS surface fitting with Gauss-Newton. Master’s thesis, Luleå University of Technology, 2009.

A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées. Comptes Rendus de

Académie des Sciences, 25:536–538, 1847.

CESAR laboratory (Oak Ridge National Laboratory). USF Range Image Database.

http://marathon.csee.usf.edu/range/DataBase.html.

M. Cetin and A. Erar. Variable selection with Akaike information criteria: a comparative study. Hacettepe

Journal of Mathematics and Statistics, 31:89–97, 2002.

G. Chaitin. On the length of programs for computing finite binary sequences. Journal of the Association for

Computing Machinery, 13:547–569, 1966.

G. Charpiat, O. Faugeras, and R. Keriven. Image statistics based on diffeomorphic matching. International

Conference on Computer Vision, 2005.

A. Collignon, D. Vandermeulen, P. Suetens, and G. Marchal. 3d multi-modality medical image registration

based on information theory. Computational Imaging and Vision, 3:263–274, 1995.

226 BIBLIOGRAPHY

T. F. Cootes, G. J. Edwards, and C. J. Taylor. Active appearance models. European Conference on Computer

Vision, 1998.

T. Corpetti, É. Mémin, and P. Pérez. Dense estimation of fluid flows. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 24:365–380, 2002.

P. Craven and G. Wahba. Smoothing noisy data with spline functions: estimating the correct degree of smooth-

ing by the method of generalized cross-validation. Numerische Mathematik, 31:377–403, 1979.

J.-C. Culioli. Introduction l’optimisation. Ellipses Marketing, 1994.

H. B. Curry and I. J. Schoenberg. On spline distributions and their limits: the pólya distributions. Bulletin of

the American Mathematical Society, 53:1114, 1947.

C. Dachapak, S. Kanae, Z. J. Yang, and K. Wada. Study on radial basis function network in reproducing kernel

Hilbert space. Signal and Image Processing, 2005.

T. A. Davis and W. W. Hager. Modifying a sparse cholesky factorization. SIAM Journal on Matrix Analysis

and Applications, 20:606–627, 1999.

C. de Boor. On calculating with B-splines. Journal of Approximation Theory, 6:50–62, 1972.

C. de Boor. A Practical Guide to Splines, Revised Edition, volume 27 of Applied Mathematical Sciences.

Springer, 2001.

A. Del Bue. A factorization approach to structure from motion with shape priors. IEEE International Confer-

ence on Computer Vision and Pattern Recognition, 2008.

A. Del Bue and L. Agapito. Non-rigid stereo factorization. International Journal of Computer Vision, 66(2):

193–207, 2006.

A. Del Bue and L. Agapito. Scene Reconstruction, Pose Estimation and Tracking, chapter 14, pages 243–264.

2007.

P. Dierckx. Curve and Surface Fitting with Splines. Monographs on Numerical Analysis. Oxford University

Press, 1993.

G Donato and S Belongie. Approximation methods for thin plate spline mappings and principal warps. Euro-

pean Conference on Computer Vision. Springer, 2002.

A. Doshi, A. Hilton, and J. Starck. An empirical study of non-rigid surface feature matching. European

Conference on Visual Media Production, 2008.

J. Erickson, S. Har-Peled, and D. Mount. On the least median square problem. 20th ACM Symposium on

Computational Geometry, pages 273–279, 2004.

D. Falie and V. Buzuloiu. Noise characteristics of 3D Time-of-Flight cameras. International Symposium on

Signals, Circuits and Systems, 2007.

M. Farenzena, A. Bartoli, and Y. Mezouar. Efficient camera smoothing in sequential structure-from-motion

using approximate cross-validation. European Conference on Computer Vision, 2008.

BIBLIOGRAPHY 227

G. Farin. Curves and surfaces for computer-aided geometric design 4th Edition. Computer Science and

Scientific Computing. Academic Press, 1997.

O. Faugeras. Three-Dimensional Computer Vision. MIT, 1993.

O. Faugeras, Q.-T. Luong, and T. Papadopoulo. The Geometry of Multiple Images. MIT Press, 2004.

M. Fischler and B. Robert. Random sample consensus: a paradigm for model fitting with applications to image

analysis and automated cartography. Communications of the ACM, 24(6):381–395, 1981.

G. Fleury and M. Gourgand. Genetic algorithms applied to workshop problems. International Journal of

Computer Integrated Manufacturing, 11:183–192, 1998.

M. Fornefett, K. Rohr, and H. Stiehl. Elastic registration of medical images using radial basis functions with

compact support. IEEE International Conference on Computer Vision and Pattern Recognition, 1999.

M. Fornefett, K. Rohr, and H.S. Stiehl. Radial basis functions with compact support for elastic registration of

medical images. Image and Vision Computing, 19:87–96, 2001.

V. Gay-Bellile. Contributions au recalage et à la reconstruction 3D de surfaces déformables. PhD thesis,

Université Blaise Pascal, 2008.

V. Gay-Bellile, M. Perriollat, A. Bartoli, and P. Sayd. Image registration by combining thin-plate splines with

a 3D morphable model. IEEE International Conference on Image Processing, 2006.

V. Gay-Bellile, A. Bartoli, and P. Sayd. Feature-driven direct non-rigid image registration. British Machine

Vision Conference, 2007.

S. Geisser. The predictive sample reuse method with applications. Journal of the American Statistical Associ-

ation, 70:320–328, 1975.

C. P. Gendrich and M. M. Koochesfahani. A spatial correlation technique for estimating velocity fields using

molecular tagging velocimetry (mtv). Experiments in Fluids, 22:67–77, 1996.

J.E. Gentle, W. Härdle, and Y. Mori. Handbook of Computational Statistics. Springer, 2004. URL

http://fedc.wiwi.hu-berlin.de/xplore/ebooks/html/csa/.

S. George and M. T. Nair. Parameter choice by discrepancy principles for ill-posed problems leading to optimal

convergence rates. Journal of Optimization theory and applications, 83(1):217–222, 1994.

P. Georgel, S. Benhimane, and N. Nassir. A unified approach combining photometric and geometric information

for pose estimation. British Machine Vision Conference, 2008.

S. B. Gokturk, H. Yalcin, and C. Bamji. A time-of-flight depth sensor - system description, issues and solutions.

IEEE International Conference on Computer Vision and Pattern Recognition, 2004.

G. Golub, M. Health, and G. Wahba. Generalized cross validation as a method for choosing a good ridge

parameter. Technometrics, 21:215–223, 1979.

G.H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press, 1996a.

G.H. Golub and C. F. Van Loan. Matrix Computations, chapter 5.2, pages 223–236. The Johns Hopkins

University Press, 1996b.

228 BIBLIOGRAPHY

A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica, chapter The Gaussian and

Mean Curvatures, pages 373–380. CRC Press, 1997.

M. Groher, M. Baust, D. Zikic, and N. Navab. Monocular deformable model-to-image registration of vascular

structures. Proceedings of the International Workshop on Biomedical Image Registration (WBIR), 2010.

N. Gumerov, A. Zandifar, R. Duraiswami, and L. S. Davis. Structure of applicable surfaces from single views.

European Conference on Computer Vision, 2004.

E. Haber and J. Modersitzki. Intensity gradient based registration and fusion of multi-modal images. Springer

Berlin, editor, International Conference on Medical Image Computing and Computer Assisted Intervention,

volume 4191 of Lecture Notes in Computer Science, pages 726–733, 2006.

D. Hahn, V. Daum, and J. Hornegger. Automatic parameter selection for multi-modal image registration. IEEE

Transactions on Medical Imaging, 29(5):1140–1155, 2010.

D. A. Hahn, Y. Sun, J. Hornegger, F. Sauer, G. Wolz, T. Kuwert, and X. Xu. A practical salient region feature

based 3D multimodality registration method for medical images. Medical Imaging 2006: Image Processing,

pages 870–879, 2006.

P.C. Hansen. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 34(4):561–580,

1992. ISSN 0036-1445. doi: http://dx.doi.org/10.1137/1034115.

P.C. Hansen. The L-curve and its use in the numerical treatment of inverse

problems. Technical report, Technical University of Denmark, 2005. URL

http://www.math.sintef.no/vskoler/2005/notes/Lcurve.pdf.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge University Press, second

edition, 2003a.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision, chapter A3, pages 568–577. Cam-

bridge University Press, second edition, 2003b.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning, chapter 8, pages 225–256.

Springer, 2001.

D. Heitz, P. Héaz, É. Mémin, and J. Carlier. Dynamic consistent correlation-variational approach for robust

optical flow estimation. Experiments on Fluids, 45:595–608, 2008.

B. K. P. Horn and B. G. Schunck. Determining optical flow. Artificial Intelligence, 17:185–203, 1981.

S. Hsu, S. Acharya, A. Rafii, and R. New. Performance of a Time-of-Flight camera for intelligent vehicle safety

applications. Advanced Microsystems for Automotive Applications. 2006.

P.J. Huber. Robust Statistics. Wiley, 1981.

M. Irani and P. Anandan. About direct methods. Workshop on Vision Algorithms, 1999.

H. J. Johnson and G. E. Christensen. Consistent landmark and intensity-based image registration. IEEE Trans-

actions on Medical Imaging, 21(5):450–461, 2002.

S. Joshi and M. I. Miller. Landmark matching via large deformation diffeomorphisms. IEEE Transactions on

Image Processing, 9:1357–1370, 2000.

BIBLIOGRAPHY 229

F. Jurie and M. Dhome. Hyperplane approximation for template matching. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 24(7):996–1000, 2002.

T. Kanade and M. Okutomi. A stereo matching algorithm with adaptive window: theory and experiment. IEEE

International Conference on Robotics and Automation, 1991.

J. Kiefer. Sequential minimax search for a maximum. Proceedings of the American Mathematical Society,

volume 4, pages 502–506, 1953.

R. Koch, I. Schiller, B. Bartczak, F. Kellner, and K. Koeser. MixIn3D: 3D mixed reality with ToF-cameras.

Proceedings of the DAGM (German Association for Pattern Recognition) Syn3D Workshop, 2009.

A. Kolmogorov. Three approaches to the quantitative definition of information. Problems of Information

Transmissions, 1:1–7, 1965.

C. L. Lawson and R. J. Hanson. Solving Least Squares Problem. Prentice Hall, Englewood Cliffs, 1974.

K. Levenberg. A method for the solution of certain non-linear problems in least squares. The Quarterly of

Applied Mathematics, 2:164–168, 1944.

J. Lim and M.-H. Yang. A direct method for non-rigid motion with thin-plate spline. IEEE International

Conference on Computer Vision and Pattern Recognition, 2005.

T. Lindeberg and B. ter Haar Romeny. Linear scale-space. Mathematical Imaging and Vision. ter Haar Romeny,

1994.

J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorporating rigid structures. Computer Vision and

Image Understanding, 66(2):223–232, 1997.

D. G. Lowe. Object recognition from local scale-invariant features. International Conference on Computer

Vision, pages 1150–1157, 1999.

D. G. Lowe. Distinctive image features from scale-invariant keypoints. International Journal of Computer

Vision, 60(2):91–110, 2004.

X. Luan. Experimental Investigation of Photonic Mixer Device and Development of TOF 3D Ranging Systems

Based on PMD Technology. PhD thesis, University of Siegen, 2001.

K. Madsen, H. B. Nielsen, and O. Tingleff. Methods for non-linear least squares problems, 2nd edition. Tech-

nical University of Denmark, April 2004.

R. Malgouyres. Algorithmes pour le synthèse d’images et l’animation 3D. Collection Sciences Sup. Dunod,

2ème edition, 2005.

R. Malgouyres, F. Brunet, and S. Fourey. Binomial convolutions and derivatives estimation from noisy dis-

cretizations. International Conference on Discrete Geometry for Computer Imagery, 2008.

C.L. Mallows. Somme comments on cp. Technometrics, 15(4):661–675, 1973.

D. Marquardt. An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied

Mathematics, 11:431–441, 1963.

230 BIBLIOGRAPHY

J. Matas, O. Chum, M. Urba, and T. Pajdla. Robust wide baseline stereo from maximally stable extremal

regions. British Machine Vision Conference, pages 384–396, 2002.

I. Matthews and S. Baker. Active appearance models revisited. International Journal of Computer Vision, 60

(2):135–164, November 2004.

P. J. Mc Carthy. Direct analytic model of the L-curve for thikhonov regularization parameter selection. Inverse

Problems, 19:643–663, 2003.

C. R. Meyer, J. L. Boes, B. Kim, P. H. Bland, K. R. Zasadny, P. V. Kison, K. Koral, K. A. Frey, and R. L.

Wahl. Demonstration of accuracy and clinical versatility of mutual information for automatic multimodality

image fusion using affine and thin-plate spline warped geometric deformations. Medical Image Analysis, 1

(3):195–206, 1997.

J. Michot, A. Bartoli, F. Gaspard, and J.-M. Lavest. Algebraic line search for bundle adjustment. British

Machine Vision Conference, 2009.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 27(10):1615–1630, 2005.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, F. Schaffalitzky, T. Kadir, and L. Van Gool. A

comparison of affine region detectors. International Journal of Computer Vision, 65:43–72, 2005.

J. Modersitzki. Numerical Methods for Image Registration. Oxford Science, 2004.

V.A. Morozov. The error principle in the solution of operational equations by the regularization method. Com-

putational Mathematics and Mathematical Physics, 8:63–87, 1966.

V. Nannen. The paradox of overfitting. Master’s thesis, Dutch National Research Institute for Mathematics and

Informatics, 2003a.

V. Nannen. A short introduction to model selection, Kolmogorov complexity and Minimum Description Length

(MDL). Technical report, Dutch National Research Institute for Mathematics and Informatics, 2003b.

S. K. Nayar and Y. Nakagawa. Shape from focus. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 16(8):824–831, 1994.

J. A. Nelder and R. Mead. A simplex method for function minimization. The Computer Journal, 7:308–313,

1965.

D. Nistér and H. Stewénius. Linear time maximally stable extremal regions. European Conference on Computer

Vision, 2008.

J. Nocedal and S. J. Wright. Numerical Optimization. Springer, 1999.

J.-M. Odobez and P. Bouthemy. Robust multiresolution estimation of parametric motion models. Journal of

Visual Communication and Image Representation, 6(4):348-365, December 1995., 6:348–365, 1995.

S.I. Olsen and A. Bartoli. Implicit non-rigid structure-from-motion with priors. Journal of Mathematical

Imaging and Vision, 31(2-3):233–244, 2008.

N. Papadakis and É. Mémin. Variational assimilation of fluid motion from image sequence. SIAM Journal on

Imaging Science, 1:343–363, 2008.

BIBLIOGRAPHY 231

J. Penne, K. Höller, M. Stürmer, T. Schrauder, A. Schneider, R. Engelbrecht, H. Feußner, B. Schmauss, and

J. Hornegger. Time-of-Flight 3-D endoscopy. International Conference on Medical Image Computing and

Computer Assisted Intervention, 2009.

S. Pereverzev and E. Schock. Morozov’s discrepancy principle for Tikhonov regularization of severely ill-posed

problems in finite-dimensional subspaces. Technical report, University of Kaiserslautern, 1999.

M. Perriollat and A. Bartoli. A quasi-minimal model for paper-like surfaces. Proceedings of the ISPRS Inter-

national Workshop “Towards Benmarking Automated Calibration, Orientation, and Surface Reconstruction

from Images”, 2007.

M. Perriollat, R. Hartley, and A. Bartoli. Monocular template-based reconstruction of inextensible surfaces.

British Machine Vision Conference, 2008.

M. Perriollat, R. Hartley, and A. Bartoli. Monocular template-based reconstruction of inextensible surfaces.

International Journal of Computer Vision, 2010.

J. Pilet, V. Lepetit, and P. Fua. Real-time non-rigid surface detection. IEEE International Conference on

Computer Vision and Pattern Recognition, 2005.

J. Pilet, V. Lepetit, and P. Fua. Fast non-rigid surface detection, registration and realistic augmentation. Inter-

national Journal of Computer Vision, 76(2), 2008.

B. Pires and P. Aguiar. Registration of images with small overlap. IEEE Workshop on Multimedia Signal

Processing, 2004.

D. Pizarro and A. Bartoli. Shadow resistant direct image registration. Scandinavian Conference on Image

Analysis, 2007.

D. Pizarro and A. Bartoli. Feature-based deformable surface detection with self-occlusion reasoning. 3D Data

Processing, Visualization and Transmission, 2010.

J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual information based registration of medical images:

A survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, 2003.

T. Poggio, R. Rifkin, S. Mukherjee, and P. Niyogi. General conditions for predictivity in learning theory.

Nature, 428:419–422, 2004.

M. J. Powell. Five lectures on radial basis functions. Technical report, Informat-

ics and Mathematical Modelling, Technical University of Denmark, DTU, 2005. URL

http://www2.imm.dtu.dk/pubdb/p.php?3600.

M. Prasad, A. Zisserman, and A. W. Fitzgibbon. Single view reconstruction of curved surfaces. IEEE Interna-

tional Conference on Computer Vision and Pattern Recognition, volume 2, pages 1345–1354, June 2006.

W.H. Press, S.A Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical recipes in C (2nd ed.): the art of

scientific computing. Cambridge University Press, 1992.

J. Rissanen. Modeling by the shortest data description. Automatica, 14:465–471, 1978.

S. Roberts and L. Stals. Discrete thin plate spline smoothing in 3D. Jagoda Crawford and A. J. Roberts, editors,

Proceedings of 11th Computational Techniques and Applications Conference CTAC-2003, volume 45, pages

C646–C659, 2004.

232 BIBLIOGRAPHY

G. Rodriguez and D. Theis. An algorithm for estimating the optimal regularization parameter by the L-curve.

Rendiconti di Matematica, 25:69–84, 2005.

S. Romdhani and T. Vetter. Efficient, robust and accurate fitting of a 3D morphable model. International

Conference on Computer Vision, 2003.

E. Ronchetti. Robustness aspects of model choice. Statistica Sinica, 7:327–338, 1997.

E. Ronchetti and R. Staudte. A robust version of mallows’s cp. Journal of the American Statistical Association,

89(426):550–559, 1994.

P.J. Rousseeuw. Least median of squares regression. Journal of the American Statistical Association, 79(388):

871–880, 1984.

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration

using free-form deformations: Application to breast MR images. IEEE Transactions on Medical Imaging,

18:712–721, 1999.

M. Salzmann, R. Hartley, and P. Fua. Convex optimization for deformable surface 3-D tracking. International

Conference on Computer Vision, 2007.

M. Salzmann, F. Moreno-Noguer, V. Lepetit, and P. Fua. Closed-form solution to non-rigid 3D surface regis-

tration. European Conference on Computer Vision, pages 581–594, 2008a.

M. Salzmann, R. Urtasun, and P. Fua. Local deformation models for monocular 3D shape recovery. IEEE

International Conference on Computer Vision and Pattern Recognition, 2008b.

M. Salzmann, R. Urtasun, and P. Fua. Local deformation models for monocular 3D shape recovery. IEEE

International Conference on Computer Vision and Pattern Recognition, 2009.

D. Scharstein and R. Szeliski. Stereo matching with nonlinear diffusion. International Journal of Computer

Vision, 28(2):155–174, 1998.

E. Schock. Parameter choice by discrepancy principles for the approximate solution of ill-posed problems.

Integral Equations and Operator Theory, 7:895–898, 1984.

I. J. Schoenberg. Contributions to the problem of approximation of equidistant data by analytic functions.

Quarterly of Applied Mathematics, 4:45–99, 1946.

L. Schumaker. Spline functions: basic theory. Wiley, 1981.

G. Schwarz. Estimating the dimension of a model. Annals of Statistics, 6:461–464, 1978.

F. Schweiger, B. Zeisl, P. Georgel, G. Schroth, E. Steinbach, and N. Navab. Maximum detector response

markers for SIFT and SURF. Vision, Modeling and Visualization Workshop, 2009.

C. Shannon. A mathematical theory of communication. Bell System Technical Journal, 27:379–423,623–656,

1948.

J. Shao. Linear model selection by cross-validation. Journal of the American Statistical Association, 88(422):

486–494, 1993.

BIBLIOGRAPHY 233

S. Shen, W. Shi, and Y. Liu. Monocular template-based tracking of inextensible deformable surfaces under

L2-norm. Asian Conference on Computer Vision, pages 214–223, 2009.

S. Shen, W. Shi, and Y. Liu. Monocular 3-D tracking of inextensible deformable surfaces under L2-norm. IEEE

Transactions on Image Processing, 19:512–521, 2010.

E.H. Shiguemori, H.F. de Campos Velho, and J.D.S. da Silva. Generalized discrepancy principle. Inverse

Problems, Design and Optimization Symposium, 2004.

G. Silveira and E. Malis. Real-time visual tracking under arbitrary illumination changes. IEEE International

Conference on Computer Vision and Pattern Recognition, 2007.

R. Solomonoff. A formal theory of inductive inference, part 1 and 2. Information and Control, 7:1–22,224–254,

1964.

N. Sugiura. Further analysis of the data by Akaike’ s information criterion and the finite corrections. Commu-

nications in Statistics - Theory and Methods, 7(1):13–26, 1978.

R. Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends in Computer Graphics and

Vision, 2:1–104, 2006.

U. Tautenhahn and U. Hämarik. The use of monotonicity for choosing the regularization parameter in ill-posed

problems. Inverse Problems, 15:1487–1505, 1999.

A. Thompson and B. N. Taylor. Guide for the Use of the International System of Units (SI), chapter 10, page 33.

National Institute of Standards and Technology, 2008.

C. Tomasi and L. Kanade. Shape and motion from image streams under orthography: A factorization method.

International Journal of Computer Vision, 9:137–154, 1992.

P. H. S. Torr and A. Zisserman. Feature based methods for structure and motion estimation. Vision Algorithms,

1999.

L. Torresani, A. Hertzmann, and C. Bregler. Nonrigid structure-from-motion: Estimating shape and motion

with hierarchical priors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 30(5):878–892,

2008.

A. Turing. On computable numbers, with an application to the entscheidungsproblem. Proceedings of the

London Mathematical Society, 1936.

T. Tuytelaars and K. Mikolajczyk. Local invariant feature detectors: A survey. Foundations and Trends in

Computer Graphics and Vision, 3(3):177–280, 2007.

C. Ulrich, C. Schaller, J. Penne, and J. Hornegger. Evaluation of a time-of-flight based respiratory motion

management system. Bildverarbeitung für die Medizin, 2010.

A. Vedaldi and B. Fulkerson. VLFeat: An open and portable library of computer vision algorithms.

http://www.vlfeat.org/, 2008.

L. Viarani, D. Stoppa, L. Gonzo, M. Gottardi, and A. Simoni. A CMOS smart pixel for active 3-D vision

applications. IEEE Sensors Journal, 4(1):145–152, 2004.

234 BIBLIOGRAPHY

P.A. Viola. Alignment by Maximization of Mutual Information. PhD thesis, Massachusetts Institute of Tech-

nology, 1995.

G. Wahba. Spline Models for Observational Data, volume 59 of CBMS-NSF Regional Conference Series in

Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1990.

G. Wahba and S. Wold. A completely automatic French curve: fitting spline functions by cross-validation.

Commun. Stat., 4:1–17, 1975.

J. Xiao, J. Chai, and T. Kanade. A closed-form solution to non-rigid shape and motion recovery. International

Journal of Computer Vision, 67(2):233–246, 2006.

G. Xú and Z. Zhang. Epipolar geometry in stereo, motion, and object recognition. Springer, 1996.

Z. Xu, R. Schwarte, H. Heinol, B. Buxbaum, and T. Ringbeck. Smart pixel - photonic mixer device (PMD).

Technical report, PMDTec, 2005.

R. Zabih and V. Kolmogorov. Spatially coherent clustering using graph cuts. IEEE International Conference

on Computer Vision and Pattern Recognition, 2004.

R. Zhang, P.-S. Tsai, J. E. Cryer, and M. Shah. Shape from shading: A survey. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 21:690–706, 1999.

S. Zhang. High-resolution, Real-time 3-D Shape Measurement. PhD thesis, Stony Brook University, 2005.

Z. Zhang. Parameter estimation techniques: A tutorial with application to conic fitting. Image and Vision

Computing, 15:59–76, 1997.

J. Zhu, S.C.H. Hoi, and M.R. Lyu. Nonrigid shape recovery by gaussian process regression. IEEE International

Conference on Computer Vision and Pattern Recognition, 2009.

D. Zikic, M. Baust, A. Kamen, and N. Navab. Generalization of deformable registration in riemannian sobolev

spaces. International Conference on Medical Image Computing and Computer Assisted Intervention, 2010a.

D. Zikic, B. Glocker, O. Kutter, M. Groher, N. Komodakis, A. Kamen, N. Paragios, and N. Navab. Linear

intensity-based image registration by markov random fields and discrete optimization. Medical Image Anal-

ysis, In Press, Accepted Manuscript, 2010b.

B. Zitová and J. Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11):977–1000,

2003.

