Utilisation de l'information photométrique pour la sélection des hyperparamètres en recalage géométrique d'images

F. Brunet^{1,2}, A. Bartoli¹, N. Navab², R. Malgouyres³

¹ISIT, Université d'Auvergne, Clermont-Ferrand

²CAMPAR, Technische Universität München, Munich

³LIMOS, Université d'Auvergne, Clermont-Ferrand

COmpression et REprésentation des Signaux Audiovisuels, octobre 2010

Plan

- Qu'est-ce que le recalage ?
 - Principe général
 - Grandes approches

Problème : le choix des hyperparamètres

Solution proposée

Résultats

Qu'est-ce que le recalage?

Déterminer une transformation géométrique qui aligne une image source et une image cible

 ${\bf Image\ source\ } S$

En paramétrique trouver \mathbf{p} tel que : $\mathcal{W}(\cdot;\mathbf{p})$

Image cible T

Deux grandes approches

L'approche géométrique

L'approche directe (ou photométrique)

 ${\bf Image\ source}\ S$

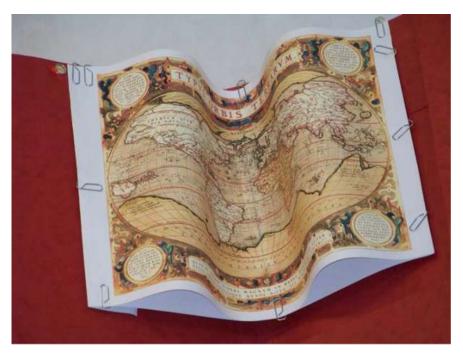
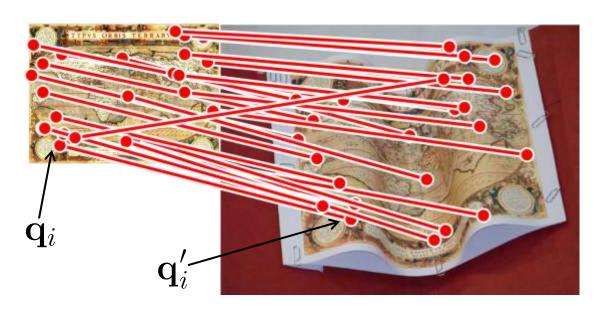


Image cible T

Extraction de correspondances de points

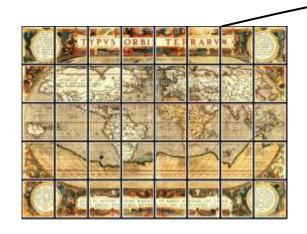
$$\{\mathbf{q}_i \leftrightarrow \mathbf{q}_i'\}_{i=1}^n$$

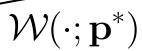


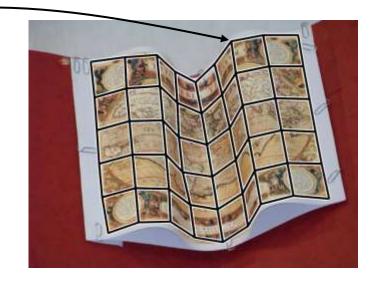
[Méthode : SIFT, SURF, ...]

Calcul des paramètres **p*** de la transformation à partir des correspondances de points

$$\mathbf{p}^* = \arg\min_{\mathbf{p}} \sum_{i=1}^n \|\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}_i'\|^2$$

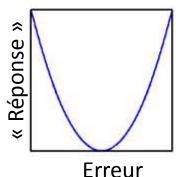


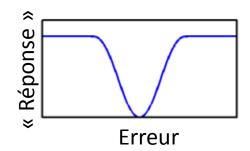




Variantes

Robustesse





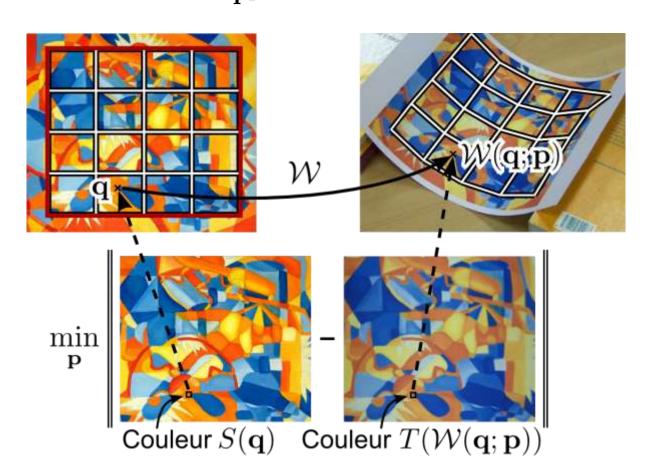
$$\min_{\mathbf{p}} \sum_{i=1}^{n} \rho\left(\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}_i'; \gamma\right)$$

Régularisation

$$\min_{\mathbf{p}} \sum_{i=1}^{n} \rho \left(\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}'_i; \gamma \right) + \lambda \sum_{i=1}^{2} \int_{\Omega} \left\| \frac{\partial^2 \mathcal{W}^i}{\partial \mathbf{q}^2} (\mathbf{q}; \mathbf{p}) \right\|^2 d\mathbf{q}$$

L'approche directe (photométrique)

$$\mathbf{p}^* = \arg\min_{\mathbf{p}} \sum_{\mathbf{q} \in \mathfrak{R}} \|S(\mathbf{q}) - T(\mathcal{W}(\mathbf{q}; \mathbf{p}))\|^2$$



Problème : les hyperparamètres

• Qu'est-ce que les hyperparamètres ?

$$\min_{\mathbf{p}} \sum_{i=1}^{n} \rho \left(\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}'_i; \gamma \right) + \lambda \mathcal{R}(\mathbf{p})$$

Les hyperparamètres

Leur détermination est essentielle!

Image source

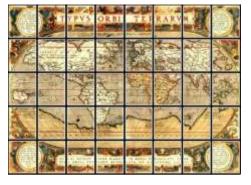
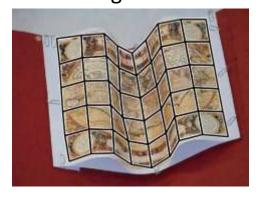
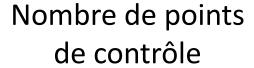
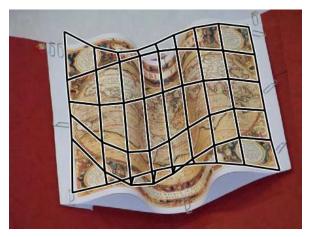


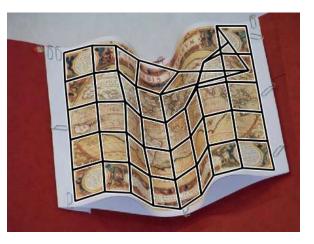
Image cible



pas assez







trop

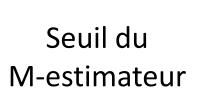
Les hyperparamètres

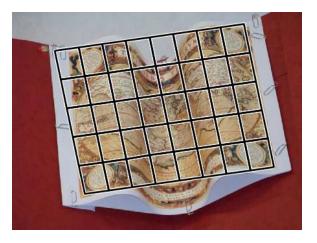
Leur détermination est essentielle!

Image source

Image cible

Trop bas





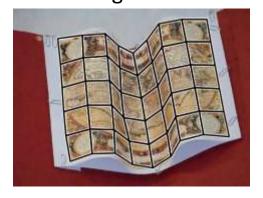
Trop élevé

Les hyperparamètres

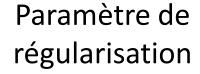
Leur détermination est essentielle!

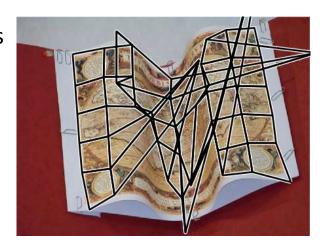
Image source

Image cible



Trop bas





Trop élevé

Détermination des hyperparamètres

Comment les déterminer ?

$$\min_{\mathbf{p},\lambda,\gamma,...} \sum_{i=1}^{n} \rho \left(\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}_i'; \gamma \right) + \lambda \mathcal{R}(\mathbf{p})$$

Détermination des hyperparamètres

Approche classique

$$\lambda^*, \gamma^*, \dots = \arg\min_{\lambda, \gamma, \dots} C(\lambda, \gamma, \dots)$$

$$\min_{\mathbf{p}} \sum_{i=1}^{n} \rho \left(\mathcal{W}(\mathbf{q}_i; \mathbf{p}) - \mathbf{q}'_i; \gamma^* \right) + \lambda^* \mathcal{R}(\mathbf{p})$$

Validation croisée

- Un des critères classiques : la validation croisée
 - Mesure la capacité à « généraliser les données »
 - Découpe des données en jeu d'entrainement et jeu d'essai

- Inconvénients
 - Temps de calcul importants
 - N'utilise que les données du problème d'estimation (ici, les correspondances de points)

Autres critères

- Mallow's Cp
- Akaike Information Criterion (AIC)
- Bayesian Information Criterion (BIC)
- Minimum Description Length (MDL)

• ...

 Toujours le même problème : n'utilise que les correspondances de points

Approche proposée

- Utiliser toute l'information à disposition :
 - Les correspondances de points
 - L'information fournie par les couleurs

Correspondances de points : jeu d'entrainement

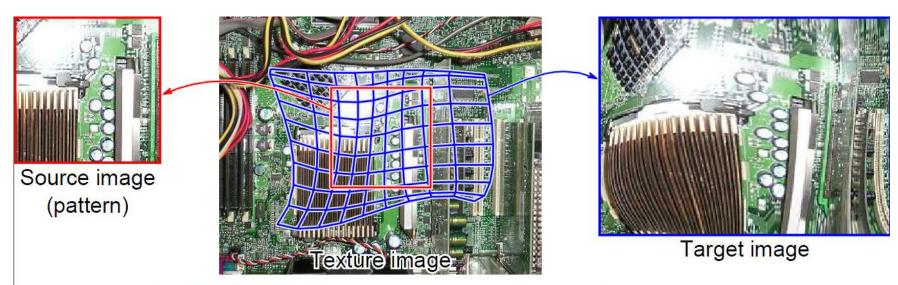
Couleurs : jeu de test

Approche proposée

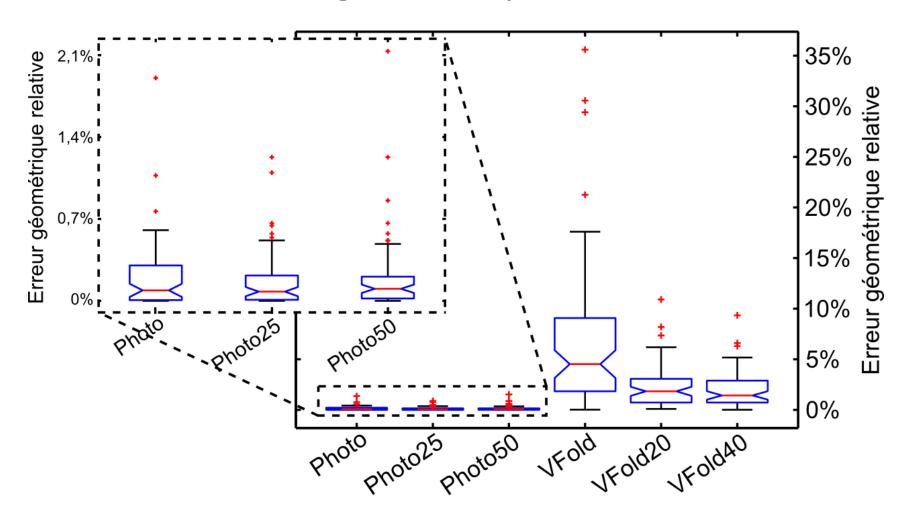
$$\mathcal{C}(\lambda, \gamma, \ldots) = rac{1}{|\mathfrak{R}|} \sum_{i=1}^n \|\mathcal{S}(\mathbf{q}) - \mathcal{T}(\mathcal{W}(\mathbf{q}; \mathbf{p}_{\lambda, \gamma, \ldots}))\|^2$$

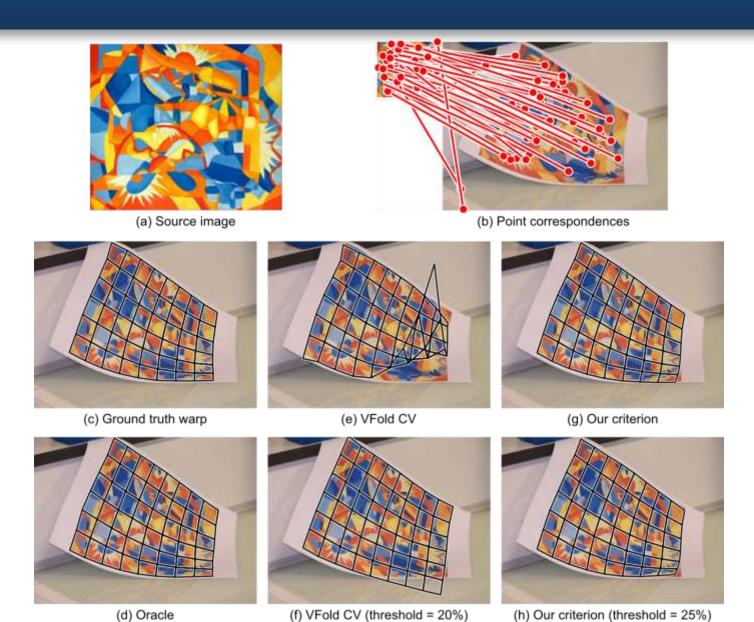
$$\mathbf{p}^* = \arg\min_{\mathbf{p}} \sum_{\mathbf{q} \in \mathfrak{R}} \|S(\mathbf{q}) - T(\mathcal{W}(\mathbf{q}; \mathbf{p}))\|^2$$

Données synthétiques



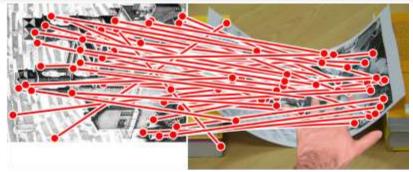
« Erreur géométrique relative »



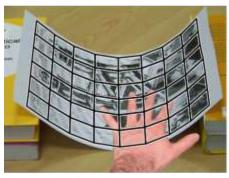


Critère	Erreur géométrique relative
VCV	1,852%
VCV (robuste)	0,675%
Notre critère	0,190%
Notre critère (robuste)	0,197%

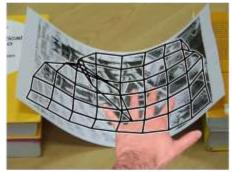
(a) Source image



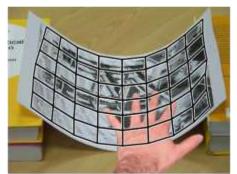
(b) Point correspondences



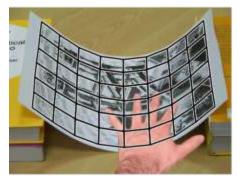
(c) Ground truth warp



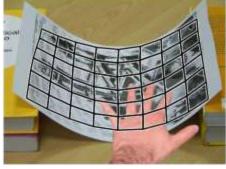
(e) VFold CV



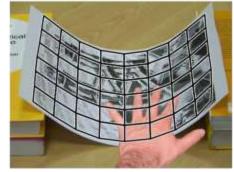
(g) Our criterion



(d) Oracle



(f) VFold CV (threshold = 20%)



(h) Our criterion (threshold = 25%)

Conclusion

Importance des hyperparamètres et de leur sélection

- Nouveau critère exploitant l'intégralité des données du problème
 - Combinaison des approches géométriques et photométriques

- Et après?
 - Comment optimiser le critère proposé ?

Merci!