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Abstract. We present different approaches to reconstructing an inex-
tensible surface from point correspondences between an input image
and a template image representing a flat reference shape from a fronto-
parallel point of view. We first propose a ‘point-wise’ method, i.e. a
method that only retrieves the 3D positions of the point correspondences.
This method is formulated as a second-order cone program and it han-
dles inaccuracies in the point measurements. It relies on the fact that
the Euclidean distance between two 3D points must be shorter than
their geodesic distance (which can easily be computed from the tem-
plate image). We then present an approach that reconstructs a smooth
3D surface based on Free-Form Deformations. The surface is represented
as a smooth map from the template image space to the 3D space. Our
idea is to say that the 2D-3D map must be everywhere a local isometry.
This induces conditions on the Jacobian matrix of the map which are
included in a least-squares minimization problem.

1 Introduction

Monocular surface reconstruction of deformable objects is a challenging problem
which has known renewed interest during the past few years. This problem is
fundamentally ill-posed because of the depth ambiguities; there are virtually
an infinite number of 3D surfaces that have exactly the same projection. It
is thus necessary to use additional constraints ensuring the consistency of the
reconstructed surface.

In this paper, we present two algorithms for monocular reconstruction of de-
formable and inextensible surfaces under some general assumptions. First, we
consider the template-based case. Reconstruction is achieved from point corre-
spondences between an input image and a template image showing a flat refer-
ence shape from a fronto-parallel point of view. Second, we suppose the intrinsic
parameters of the camera to be known. Third, we assume that the camera is a
perspective camera. These are common assumptions [1–3].

Over the years, different types of constraints have been proposed to dis-
ambiguate the problem of monocular reconstruction of deformable surfaces.
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They can be divided into two main categories: the statistical and the physi-
cal constraints. For instance, the methods relying on the low-rank factorization
paradigm [4–10] can be classified as statistical approaches. Learning approaches
such as [11–13, 1] also belong to the statistical approaches. Work such as [1],
where the reconstructed surface is represented as a linear combination of inex-
tensible deformation modes, is also a statistical approach. Physical constraints
include spatial and temporal priors on the surface to reconstruct [14, 15]. Sta-
tistical and physical priors can be combined [5, 7]. A physical prior of particular
interest is the hypothesis of having an inextensible surface [16, 2, 1, 3]. In this pa-
per, we consider this type of surface. This hypothesis means that the geodesics
on the surface may not change their length across time. However, computing
geodesics is generally hard to achieve and it is even more difficult to incorporate
such constraints in a reconstruction algorithm. There exist several approaches
to approximate this type of constraint. For instance, if the points are sufficiently
close together, the geodesic between two 3D points on the surface can be ap-
proximated by the Euclidean distance [17]. An efficient approximation consists
in saying that the geodesic distance between two points is an upper bound to
the Euclidean distance [16, 3].

Algorithms for monocular reconstruction of deformable surfaces can also be
categorized according to the type of surface model (or representation) they use.
The point-wise methods utilize a sparse representation of the 3D surface, i.e. they
only retrieve the 3D positions of the data points [3]. Other methods use more
complex surface models such as triangular meshes [16, 1] or smooth surfaces such
as Thin-Plate Splines [3, 5]. In this latter case, the 3D surface is represented as
a parametric 2D-3D map between the template image space and the 3D space.
Smooth surfaces are generally obtained by fitting a parametric model to a sparse
set of reconstructed 3D points: the smooth surface is not actually used in the
3D reconstruction process. In this paper, we propose an algorithm that directly
estimates a smooth 3D surface based on Free-Form Deformations [18]. Having an
inextensible surface means that the surface must be everywhere a local isometry.
This induces conditions on the Jacobian matrix of the 2D-3D map. We show that
these conditions can be integrated in a non-linear least-squares minimization
problem along with some other constraints that force the consistency between
the reconstructed surface and the point correspondences. Such a problem can be
solved using an iterative optimization procedure such as Levenberg-Marquardt
that we initialize using a point-wise reconstruction algorithm. Our approach is
highly effective in the sense that it outperforms previous approaches in terms of
accuracy of the reconstructed surface and in terms of inextensibility.

Another important aspect in monocular reconstruction of deformable surfaces
is the way noise is handled. It can be accounted for in the template image [3] or
in the input image [1]. There exist different approaches for handling the noise.
For instance, one can minimize a reprojection error, i.e. the distance between the
data points of the input image and the projection of the reconstructed 3D points.
It is also possible to hypothesize maximal inaccuracies in the data points. We
propose a point-wise approach that accounts for noise in both the template and
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the input images. This approach is formulated as a second-order cone program
(SOCP) [19].

Notation Description

P Matrix of the intrinsic parameters of the camera (P ∈ R3×3)
(The camera is assumed to be at the coordinate origin, so the matrix P

may be assumed to be square and invertible.)

pT
k kth row of the matrix P
nc Number of point correspondences
qi ith point in the template image
q′i ith point in the input image; i ∈ {1, . . . , nc}
q̄i Point qi in homogeneous coordinates
ui Sightline corresponding to the point q′i (ui = (P−1q̄′i)/‖P−1q̄′i‖)
µi Depth of the point Qi

Qi Reconstructed 3D point i
dij Euclidean distance between points i and j (dij = ‖qi − qj‖)
x̂ True value of x (for x = q′i,qi,Qi,ui, µi, dij)

Table 1. Notation used in this paper.

2 Related Work on Inextensible Surface Reconstruction

A popular assumption made in deformable surface reconstruction is to consider
that the surface to reconstruct is inextensible [16, 2, 1, 3]. This assumption is
reasonable for many types of material such as paper and some types of fabrics.
Having an inextensible surface means that the surface is an isometric deformation
of the reference shape. Another way of putting it is to say that the length of the
geodesics between pairs of points remains unchanged when the surface deforms.
An exact transcription of this principle is difficult to integrate in a reconstruction
algorithm. Indeed, while it is trivial to compute the geodesic in a flat reference
shape, it is quite difficult to do it for a bent surface (especially when the surface is
represented as a sparse set of points or a triangular mesh). Many approximations
have thus been proposed.

The first type of approximation consists in saying that if the surface does
not deform too much then the Euclidean distance is a good approximation to
the geodesic distance. Such an approach has been used for instance in [12, 16,
20, 2]. Note that these types of constraints are usually set in a soft way. For a
given set of point pairs on the surface, the Euclidean distance should not diverge
too much from the geodesic distances. This approximation is better when there
are a large number of points. Depending on the surface model it is not always
possible to vary the number of points.

Although the Euclidean approximation can work well in some cases, this
approximation gives poor results when creases appear in the 3D surface. In this
case, the Euclidean distance between two points on the surface can shrink, as
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illustrated in figure 1. The ‘upper bound approach’ is a now classical approach [1,

Fig. 1. Inextensible object deformation. The Euclidean distance between two points is
necessarily less than or equal to the length of the geodesic that links those two points
(this length is easily computable if we have a template image representing the flat
reference surface from a fronto-parallel point of view).

3] which consists in noticing that even if the Euclidean distance between two
points can shrink it can never be greater than the length of the corresponding
geodesic. In other words, the inextensibility constraint ‖Qi−Qj‖ ≤ dij must be
satisfied for any pair of points (Qi,Qj) lying on the surface. The second principle
of such algorithms is to say that a 3D point Qi must lie on the sightline ui, i.e.
Qi = µiui. These two constraints are not sufficient to reconstruct the surface.
Indeed, nothing prevents the reconstructed surface from shrinking towards the
optical centre of the camera. This problem is ‘solved’ using a heuristic that
has been proven to be very effective in practice. It consists in considering a
perspective camera and in maximizing the depth of the reconstructed 3D points.

These ideas have been implemented in different manners. For instance, [3]
proposes a dedicated algorithm that enforces the inextensibility constraints. This
algorithm accounts for noise only in the template image (by simply increasing
a little bit the geodesic distances in the template, i.e. by replacing dij with
dij+εT where εT is the maximal inaccuracy of the points in the template image).
Another sort of implementation is given by [16, 1]. In these papers, a convex cost
function combining the depth of the reconstructed points and the negative of
the reprojection error is maximized while enforcing the inequality constraints
arising from the surface inextensibility. The resulting formulation can be easily
turned into an SOCP problem. A similar approach is explored in [2]. These last
two methods account for noise in the input image. The approach of [3] is a point-
wise method. The approaches of [16, 1, 2] use a triangular mesh as surface model,
and the inextensibility constraints are applied to the vertices of the mesh.

3 Convex Formulation of the Upper Bound Approach
with Noise in all Images

In this section, we propose a convex formulation of the principles sketched in §2
that, compared to [3], accounts for noise in both the template and the input
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images. We can express this in terms of image-plane measurements. As in [16,
1], our approach is formulated as an SOCP problem. However, contrary to [16, 1],
our approach is a point-wise method that does not require us to tune the relative
influence of minimizing the reprojection error and maximizing the depths.

3.1 Noise in the Template Only

Let us first remark that the basic principles explained in §2 can be formulated
as SOCP problems. In this first formulation, the noise is only account for in
the template image. The inextensibility constraint ‖Qi −Qj‖ ≤ dij + εT can be
written:

‖µiui − µjuj‖ ≤ dij + εT . (1)

Including the maximization of the depths, we obtain this SOCP problem:

max
µ

nc∑
i=1

µi

subject to ‖µiui − µjuj‖ ≤ dij + εT ∀(i, j) ∈ E

µi ≥ 0 i ∈ {1, . . . , nc}

(2)

where µT =
(
µ1 . . . µnc

)
, and E is a set of pairs of points to which the inexten-

sibility constraints are applied.

3.2 Noise in Both the Template and the Input Images

Let us now suppose that the inaccuracies are expressed in terms of image-plane
measurements. Suppose that points are measured in the image with a maximum
error of εI, i.e.

‖q̂′i − q′i‖ ≤ εI, ∀i ∈ {1, . . . , nc}. (3)

Since we are searching for the true 3D position of the point Qi, we say that:

q̂′i =
1

pT
3Qi

(
pT
1Qi

pT
2Qi

)
. (4)

Equation (3) can thus be rewritten:∥∥∥∥ 1

pT
3Qi

(
pT
1Qi

pT
2Qi

)
− q′i

∥∥∥∥ ≤ εI. (5)

We finally add the inextensibility constraints and the maximization of the depths
(which are given by pT

3Qi) and we obtain the following SOCP problem:

max
Q

pT
3

nc∑
i=1

Qi

subject to

∥∥∥∥[pT
1

pT
2

]
Qi − q′ip

T
3Qi

∥∥∥∥ ≤ εI pT
3Qi ∀i ∈ {1, . . . , nc}

‖Qi −Qj‖ ≤ dij ∀(i, j) ∈ E

pT
3Qi ≥ 0 ∀i ∈ {1, . . . , nc}

(6)
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where Q is the concatenation of the 3D points Qi, for i ∈ {1, . . . , nc}.

4 Smooth and Inextensible Surface Reconstruction

Although the strategem of maximizing the sum of depths
∑nc

i=1 µi described in
the previous section gives reasonable results, it is merely a heuristic, not based
on any valid principle related to surface properties. We therefore consider next
a new formulation based on the principle of surface inextensibility.

Let the surface be modelled as a function W : R2 → R3, mapping the planar
template to 3-dimensional space. The inextensibility constraint is equivalent to
saying that the map W must be everywhere a local isometry. This condition
may be expressed in terms of its Jacobian. Let J(q) ∈ R3×2 be the Jacobian
matrix ∂W/∂q evaluated at the point q. The map W is an isometry at q if the
columns of J(q) are orthonormal. This local isometry can be enforced for the
whole surface with the following least-squares constraint:∫∫ ∥∥J(q)TJ(q)− I2

∥∥2 dq = 0. (7)

In practice, we consider a discretization of the quantity in equation (7), namely

Ei(W) =

nj∑
j=1

∥∥J(gj)
TJ(gj)− I2

∥∥2 , (8)

where {gj}
nj

j=1 is a set of 2D points in the template image space taken on a fine
and regular grid (for instance, a grid of size 30× 30). This term Ei(W) measures
the departure from inextensibility of the surface W.

Our minimization problem is then to minimize this quantity, over all possible
surfaces, subject to the projection constraints, namely that pointW(qi) projects
to (or near to) the image point q′i, for all i.

4.1 Parametric Surface Model

The problem just described involves a minimization over all possible surfaces.
Instead of considering this as a variational problem over all possible surfaces,
we consider a parametrized family of surfaces. For this purpose, we chose Free-
Form Deformations (FFD) [18] based on uniform cubic B-splines [21]. Let W` :
R2 → R3 be the parametric FFD, parametrized by a family of 3D points `jk; j ∈
{1, . . . , nu}, k ∈ {1, . . . , nv}, which act as ‘attractors’ for the surface.

For a point q = (u, v) in the template, the surface point is explicitly given as

W`(q) =

nu∑
j=1

nv∑
k=1

`jkNj(u)Nk(v). (9)

The functions Nj are the B-spline basis functions [21] which are polynomials of
degree 3. If point qi = (ui, vi) is fixed and known then the surface point W`(qi)
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is expressed as a linear combination of the points `jk, and hence can be written
in the formW`(qi) = Wi`, where Wi is a 3×nunv matrix depending only on the
point qi, and ` is the vector obtained by concatenating all the points `jk. Thus,
the 3D point is a linear expression in terms of the parameter vector `. Since the
polynomials Nj and Nk depend only on a local set of the attractor points `jk,
the matrix Wi is sparse, which is important for computational efficiency.

4.2 Surface Reconstruction as a Least-Squares Problem

By replacing Qi by Wi` in (6) we may arrive at a constraint:∥∥∥∥([pT
1

pT
2

]
− q′ip

T
3

)
Wi`

∥∥∥∥ ≤ εIpT
3Wi`. (10)

We may then formulate the optimization problem as minimizing the inexten-
sibility cost Ei(W`) given in (8) over all choices of parameters `, subject to
constraints (10). The constraints are SOCP constraints, but the cost function
(8) is of higher degree in the parameters. To avoid the difficulties of constrained
non-linear optimization, we choose a different course, by including the reprojec-
tion error into the cost function, leading to an unconstrained problem.

To simplify the formulation of the reprojection error, we introduce the depths
µi as subsidiary variables, for reasons that become evident below. This is not
strictly necessary, but reduces the degree of the reprojection-error term. The
minimization problem now takes the form:

min
µ,`
Ed(µ, `) + αEi(`) + βEs(`), (11)

where Ed, Ei, Es are the data (reprojection error), inextensibilty, and smoothing
terms respectively. The data term ensures the consistency of the point correspon-
dences with the reconstructed surface. Ei forces the inextensibility of the surface.
Es promotes smooth surface in order to cope with, for instance, lack of data. The
relative influence of these three terms are controlled with the weights α ∈ R+

and β ∈ R+.
The inextensibility term has been described previously. We now describe the

two other terms in (11).

Data term. Replacing Qi by Wi` in (5) gives an expression for the reprojection
error associated with some point. However, the resulting expression is non-linear
with respect to the parameters `. We thus prefer a linear data term expressed
in terms of ‘3D errors’, which is the reason why we introduced the depths µ of
the data points in the optimization problem. The data term is then defined by:

Ed(µ, `) =

nc∑
i=1

∥∥W`(qi)− µiP
−1q̄′i

∥∥2 , (12)

which measures the distance between the pointW` on the surface and the point
at depth µi along the ray defined by q′i.
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Smoothing term. In some cases, the point correspondences and the hypothesis
of an inextensible surface are not sufficient. For instance, imagine that there is
no point correspondence in a corner of the surface. In this case, there is nothing
that indicates how the surface should behave. The corners of the surface can
bend freely as long as they do not extend or shrink (like the corners of a piece
of paper). To overcome this difficulty, we can add a third term (the smoothing
term) in our cost function that favours non-bending surfaces. Note that usually,
such terms are used to compensate for the undesirable effects of under-fitting and
over-fitting. Doing so is usually a problem because it requires one to determine
a correct value for the weight associated to the smoothing term (value β in
equation (11)). This is a sensible and critical way of balancing the effective
complexity of the surface against the complexity of the data. Here, we do not
have to care too much. Indeed, the complexity of the surface is limited by the
fact that it is inextensible. Any small value (but big enough to be not negligible,
for instance β = 10−4) is thus suitable for the weight of the smoothing term. We
define our smoothing term using the bending energy:

Es(µ, `) =

3∑
i=1

∫∫ ∥∥∥∥∥∂
2Wi
`(q)

∂q2

∥∥∥∥∥
2

F

dq. (13)

whereWi
`(q) is the i-th coordinate of the point, and ‖·‖F is the Frobenius norm

of the Hessian matrix. With FFD, there exists a simple and linear closed-form
expression for the bending energy:

Es(`) = ‖B1/2`‖2 = `TB` (14)

where B ∈ R3p×3p is a symmetric, positive, and semi-definite matrix which can
be easily computed from the second derivatives of the B-spline basis functions.

Initial solution. The problem of equation (11) is a non-linear least-squares min-
imization problem typically solved using an iterative scheme such as Levenberg-
Marquardt. Such an algorithm requires a correct initial solution. We used an
FFD surface fitted to the 3D points reconstructed with one of the point-wise
methods presented in §3. Subsequently, since we use a surface model which is
linear with respect to its parameters, the initial parameters ` can be found by
solving the least-squares problem:

min
`

nc∑
i=1

∥∥W`(qi)−Qi

∥∥2 ⇔ min
`

nc∑
i=1

‖Wi`−Qi‖2 . (15)

An alternative is to modify the problem (6), expressing Qi in terms of the
required parameters `, according to Qi = Wi`. Then one may solve for ` directly
using SOCP. If necessary, the linear smoothing term of equation (13) can be
included in equation (15).
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5 Experimental Results

5.1 Experiments on Synthetic Data

In this section, we experiment several aspects of different reconstruction algo-
rithms. We first use synthetic piece of papers, such as those of figure 2, randomly
generated using the code provided by [22]. The piece of papers are square and
200mm wide. The input images are simulated by projecting the deformed piece
of paper with a virtual camera placed at approximately 1 meter of the paper
sheet and with a focal length of 36mm. A set of nc point correspondences are
generated by taking random locations on the 3D surface. A zero mean Gaussian
noise with standard deviation of 1 pixel is added to the point correspondences.
There are no self-occlusion in the data.

Fig. 2. Example of randomly generated piece of paper. Left: 3D surface. Middle: tem-
plate image. Right: input image. The blue dots are examples of point correspondences.

Several algorithms are compared in our experiments:

– SOCPimg: our point-wise method described in §3.2 ;
– FFDref: our smooth reconstruction algorithm described in §4.2 ;
– FFDinit: the initial solution of our smooth reconstruction algorithm, as de-

scribed in §4.2 ;
– Salz: the convex formulation proposed in [1]. This method is similar to

SOCPimg except for the noise that is not handled the same way. In [1],
the author minimizes a cost function that includes a ‘reprojection error’ in
order to cope with the noise. In SOCPimg, the noise is handled with hard
constraints.

– PerrioInit: the ‘upper depth bound’ approach of [23, 3] which is a point-wise
algorithm that iteratively enforces the inextensibility constraints ;

– PerrioRef: the ‘refined approach’ of [23, 3] which minimizes a cost function
resulting in a refined estimation of the 3D points obtained with PerrioInit.

Reconstruction Errors. The discrepancy between the reconstructed and the
ground truth surfaces are quantified with two measures, depending on the sur-
face model used by the algorithms. The point-wise reconstruction error (pwre),
denoted ep, can be used for all the algorithms. It is defined by:

ep =
1

nc

nc∑
i=1

‖Qi − Q̂i‖. (16)
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For algorithms that uses more complex surface models, such as triangular meshes
or FFD, we measure the surface reconstruction error (sre), denoted es. It is the
difference between the reconstructed surfaceW` and the ground truth surface Ŵ:

es =

∫∫ ∥∥W`(q)− Ŵ(q)
∥∥dq. (17)

In this experiment, we use 1,000 randomly generated paper sheets with 150
points correspondences. Figure 3(a) shows the pwre for all the algorithms and
figure 3(b) shows the sre for the algorithms that use a complex surface model.
The main result of this experiment is that our approach FFDref gives the smallest
reconstruction errors (pwre and sre). Globally, the methods that use complex
surface models get better results than the point-wise approaches.
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(a) Point-wise reconstruction error (b) Surface reconstruction error

Fig. 3. Comparison of the reconstruction errors for different algorithms. The central
red line is the median. The limits of the blue box are the 25th and the 75th percentiles.
The black ‘whiskers’ cover approximately 99.3% of the experiment outcomes. The green
crosses are the maximal errors over the 1000 trials.

Length of Geodesics. When a reconstructed 3D surface is reconstructed in a
truly inextensible way, the transformation of the straight line linking two points
in the template image must be the geodesic linking the corresponding two 3D
points on the surface. In particular, the length of these two paths must be identi-
cal. Testing this hypothesis for our algorithms FFDinit and FFDref is the goal of
this experiment. To do so, we use the same data as in the previous experiment.
For each surface, we choose randomly 10,000 pairs of points in the template im-
age. For each pair of points (gi,gj), the length l3Dij of the deformed path linking
the 3D points W`(gi) and W`(gj) on the surface is approximated by the length
of the polygonal line linking these two points with the following formula:

l3Dij =

ng∑
k=1

∥∥∥W`(gi + k
ng
‖gj − gi‖

)
−W`

(
gi + k−1

ng
‖gj − gi‖

)∥∥∥ , (18)

where ng is the number of intermediate points used for the approximation (we
use ng = 200 since we experimentally observed that the approximation stabilizes
for values of ng greater than 180). The lengths of the deformed paths are plotted
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against their reference length in the template image in figure 4(a) for FFDinit and
in figures 4(b,c) for FFDref. Figures 4(b) and 4(c) show that, with the surfaces
reconstructed with FFDref, the length of the deformed paths are almost equal
to the length they should have if they were actual geodesics. In other words, our
approach FFDref reconstructs 3D surfaces which are truly inextensible. On the
other hand, figure 4(a) shows that the initial solution FFDinit (which is just an
FFD fitted to a sparse set of reconstructed 3D points) seems to be much less
inextensible.

(a) FFDinit (b) FFDref (c) Magnification of (b)

Fig. 4. Plot of the length of deformed paths against the length they should have if the
reconstructed surface was truly inextensible. The red diagonal line is the place where
all the blue points should be for inextensible surfaces.

Let l2Dij be the Euclidean distance between the points gi and gj . Table 2 gives

some statistics on the relative error between the computed length l3Dij and the

reference length l2Dij , i.e. the quantity (l2Dij − l2Dij )/l3Dij . These numbers confirm
the results seen in figure 4.

Mean Std deviation Median Minimum Maximum

FFDinit 0.0119 0.0417 0.0036 −1.9689 0.8931

FFDref 2.0084× 10−5 7.1965× 10−4 5.8083× 10−6 −0.0505 0.3396
Table 2. Statistics on the relative errors between the length of transformed paths and
the length they should have.

Gaussian curvature. The Gaussian curvature is the product of the two prin-
cipal curvature (which are the reciprocal of the radius of the osculating circle).
For an inextensible surface, the Gaussian curvature is null. In this experiment,
we check if this property is satisfied by the smooth surfaces reconstructed with
FFDinit and FFDref. We used the same 1,000 reconstructed surfaces as in the pre-
vious experiment. The Gaussian curvature, denoted κ, is computed for 10,000

randomly chosen points on the surface with the formula κ = det(II)
det(I) , where I

and II are the first and the second fundamental forms of the parametric sur-
face [24]. The results of this experiment are reported in table 3. It shows that,
in average, the Gaussian curvature of the surfaces reconstructed using FFDref
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are consistently close to 0. It also shows that FFDref gives Gaussian curvatures
which are 100 times smaller than the ones obtained with FFDinit. These results
demonstrate that the surfaces reconstructed with our approach FFDref are in-
deed inextensible. Note that this kind of experiment cannot be achieved if a
smooth surface is not available.

Mean Std deviation Median Minimum Maximum

FFDinit 4.9458× 10−4 0.0875 9.7302× 10−5 7.5122× 10−14 258.2379

FFDref 5.0046× 10−6 7.1320× 10−4 1.7333× 10−6 2.2325× 10−14 1.5199

Table 3. Statistics on the (absolute value of the) Gaussian curvatures for 1,000 recon-
structed surfaces and 10,000 points per surface.

5.2 Experiments on Real Data

The algorithms used in the synthetic experiments of §5.1 are applied to real data
in figures 5 and 6. These figures show that our approaches give good results on
real data. In particular, figure 5 shows that our method FFDref outperforms the
other approaches in the presence of a self-occlusion. This comes from the fact
that FFDref requires the surface to be inextensible everywhere, even if there
are no point correspondences (which is the case on the self-occluded part of the
paper sheet). An accurate stereo reconstruction of the surface in figure 6 were
available. We compare in table 4 the average 3D errors between the surfaces
reconstructed with a monocular approach to the stereo reconstruction. Again,
our method FFDref is the one giving the best results.

SOCPimg Salz FFDrefPerrioRef FFDinit

Template
image

(+ point
corresp.)

Fig. 5. Illustration of monocular reconstruction algorithms in the presence of a self-
occlusion (the point correspondences were automatically extracted using [25]). Note
how our algorithm FFDref is able to recover a reasonable shape for the occluded part.

6 Conclusion

In this paper, we presented new approaches for monocular reconstruction of
inextensible surfaces imaged by a perspective camera. In particular, we proposed
a SOCP formulation of the problem that accounts for noise in both the template
and the input images. We also designed an algorithm that directly reconstruct
a smooth surface based on free-form deformations. This algorithm outperforms
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PerrioRef SOCPimg Salz FFDinit FFDref

Template
image

Stereo reconstr.

Fig. 6. Illustration of the results obtained with several monocular reconstruction al-
gorithms. First row: input image along with a reprojection of the reconstructed 3D
surface. Second row: reconstructed surface from a different point of view. Note that
the stereo reconstruction (first column) is not a monocular algorithm: it is just used
to assert the quality of the other reconstructed surfaces (see table 4).

PerrioRef SOCPimg Salz FFDinit FFDref
2.388 2.261 4.743 2.259 1.991

Table 4. Average 3D error (in millimeters) with respect to the stereo reconstruction
of the surface for the surfaces of figure 6.

previous approaches in terms of precision of the reconstructed surface. Besides,
we experimentally showed that the surfaces reconstructed with this algorithm are
truly inextensible. The only drawback of this approach is that it is formulated as
a non-linear least-squares minimization problem with a non-convex cost function.
However, we proposed a method to build an initial solution which is close to the
optimum. It allows us to get rid of the difficulties linked to the non-convexity of
the cost function.
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