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Abstract. We present a new method to estimate derivatives of digitized
functions. Even with noisy data, this approach is convergent and can be
computed by using only the arithmetic operations. Moreover, higher or-
der derivatives can also be estimated. To deal with parametrized curves,
we introduce a new notion which solves the problem of correspondence
between the parametrization of a continuous curve and the pixels num-
bering of a discrete object.

1 Introduction

In the framework of image and signal processing, as well as shape analysis, a
common problem is to estimate derivatives of functions, when only some (possi-
bly noisy) sampling of the function is available from acquisition. This problem
has been investigated through finite difference methods ([1]), scale-space ([4, 8])
and discrete geometry ([6, 7, 5]).

We present a new approach to estimate derivatives from discretized data.
As in scale-space, our method relies on simple computations of convolutions.
However, our approach is oriented toward integer-only models and algorithms
and is based on a discrete point of view of analysis. Unlike estimators proposed
in [6], our method still works on noisy data. Moreover, we are able to estimate
higher order derivatives.

Regarding the order of convergence, we have proved that our approach is as
good as the one proposed in [6], that is, in O(h2/3) for first order derivatives. Be-
sides, this order of convergence is uniform. To the best of our knowledge, there is
no uniform convergence results for estimation of derivatives from discretizations
using scale-space.

The asymptotic computational complexity is worst case O(
√− ln(h)/h) for

first order derivatives which is similar to [6].
To deal with parametrized curves of Z

2, we introduce a new notion, the pixel
length parametrization, which solves the problem of correspondence between the
pixels numbering of a discrete object and the parametrization of a continuous
curve.



Through this paper, we also present some experimental results showing the
behavior of our derivative estimator.

2 Derivatives Estimation for Real Functions

First, we consider the case of the real functions. We call real functions functions
for which input and output sets are of dimension 1 without doing any hypothesis
on the nature of these sets. We call discrete function a function for which the
input set is such that the cardinal of all bounded subset is finite (this is the
case, for example, with Z and N). For simplification purposes, we consider in the
sequel that a discrete function is a function from Z to Z.

2.1 Principle

As said in the introduction, the principle of our derivative estimator relies on
discrete convolution products. So, we are going to define what a discrete convo-
lution product is and, then, how we are using it to construct a digital derivative
estimator.

Discrete Convolution Product

Definition 1. Let F : Z −→ Z and K : Z −→ Z be two discrete functions. The
discrete convolution product of the function F and the kernel K, denoted F ∗K,
is the discrete function defined by the following formula:

F ∗ K : Z −→ Z

a �−→
∑
i∈Z

F (a − i)K(i) (1)

For practical purpose, we consider that the kernel K has a finite support
(i.e. K is zero out of some bounded subset I of Z). By doing so, a computer
can handle the calculation of the convolution product. Then, the computation
of F ∗ K(a) can be seen as a balanced sum of values of F for abscissas close to
a with coefficients given by the kernel K.

Definition 2. Let F : Z −→ Z be a discrete function and K : Z −→ Z a
convolution kernel. We define the operator ΨK aimed to modify the function F
by convolution with the kernel K:

ΨKF : Z −→ Z

a �−→ F ∗ K(a) (2)

We will now construct the kernel at the basis of our derivative estimator.



Finite Differences. Finite differences are a widely used method for estimating
derivatives of continuous functions and solving partial differential equations.

Definition 3. Let F : Z −→ Z be a discrete function and let a ∈ Z. The
backward finite difference of F at the point of abscissa a is defined by:

F (a) − F (a − 1) (3)

Considering that the derivative of F at a is the slope of the function tangent
at this point, backward finite differences are a method to estimate the derivative
of a discrete function.

Proposition 1. For a discrete function F , the backward finite difference can be
computed with ΨδF where δ is the kernel defined as follow:

δ(a) =

⎧⎨
⎩

1 if a = 0
−1 if a = 1

0 otherwise
(4)

Smoothing Kernel.

Definition 4. For n ∈ N, we define the smoothing kernel, denoted Hn, using
binomial coefficients, as follow:

Hn(a) =

⎧⎪⎨
⎪⎩

(
n

a+ n
2

)
if n is even and a ∈ {−n

2 , . . . , n
2

}
(

n
a+ n+1

2

)
if n is odd and a ∈ {−n+1

2 , . . . , n−1
2

}
0 otherwise

(5)

Hn can be seen as the n-th line of the Pascal’s triangle recentered on 0. The
expression 1

2n ΨHnF (a) is a weighted mean of a set of values of F near the point
of abscissa a giving a stronger weight for values near a and, on the contrary, a
weaker weight for farther values. The division by 2n comes from the fact that
the sum of the n-th line coefficients of the Pascal’s triangle is always equal to 2n.

Derivative Kernel. Since preliminaries are set up, we can define the core kernel
of our derivative estimator.

Definition 5. For n ∈ N, we define the derivative kernel, denoted Dn, by:

Dn = δ ∗ Hn (6)

So, our derivative estimator for a discrete function F is defined by:

1
2n

ΨDnF (7)

Composed of two parts, Hn and δ, the derivative kernel Dn has two effects.
Thanks to Hn, the discrete function F is smoothed and so, the possible noise is
reduced. Then, the kernel δ evaluates the derivative but on a cleansed function.



2.2 Convergence

At this point, we have defined our digital derivative estimator. Now, we want
to estimate the quality of this estimator. To do so, given a continuous function
and its discretization, we want to evaluate the error made by our estimator with
respect to the theoretical derivative of the original continuous function.

The first thing to do is to establish a correspondence between a theoretical
continuous function and its discretization. Let φ : R −→ R be a continuous func-
tion and let Γ : Z −→ Z be a discrete function. Let h be the discretization step
(i.e. the size of a pixel). Let K > 0 and α ∈]0, 1] be two additional parameters.
We say that Γ is a (possibly noisy) discretization of φ if for all a ∈ Z we have
that:

|hΓ (a) − φ(ha)| ≤ Khα (8)

In other words, the point (a, Γ (a)) is close to the point (a, φ(ha)
h ) for all a of the

domain. The deviation between these two points is bounded by the quantity Khα

where K is a general constant and α is a parameter which aims to represent the
amount of noise (considering a small discretization step, h < 1, the allowed noise
is more important with α close to 0 than with α close to 1).

Theorem 1. With the following hypothesis:

– φ : R −→ R is a C3 function
– φ(3) is bounded
– α ∈]0, 1], K ∈ R

∗
+ and h ∈ R

∗
+

– Γ : Z −→ Z is such that |hΓ (a) − φ(ha)| ≤ Khα

– n =
⌊
h2(α−3)/3

⌋
there exists a function σφ,α : R+ −→ R+ with σφ,α ∈ O(h(2/3)α) such that:

∣∣∣∣ 1
2n

ΨDnΓ (a) − φ′(ha)
∣∣∣∣ ≤ σφ,α(h) (9)

In other words, we provide a derivative estimation converging at rate h(2/3)α

of functions known through their discretizations with step h and an arbitrary
noise bounded by Khα.

We don’t report here the proof of Theorem 1 for lack of space. We can
just point out that our proof relies on the use of the Floater’s Theorem ([2])
which gives the order of convergence of the k-th derivative of the Bernstein
approximation4 of a function and the k-th derivative of the function itself. The
hypothesis made in Theorem 1 about the fact that φ must be C3 with φ(3)

bounded come from the hypothesis required by the Floater’s Theorem.

4 The Bernstein approximation of a function f : [0, 1] −→ R is the Bézier curve with
control points

(
i
n
, f

(
i
n

))
i∈{0,...,n}.



2.3 Reducing the Complexity

Considering the maximum noise allowed by the Theorem 1 (that is, α = 0)
the computational complexity of our derivative estimator is quadratic (O(h−2),
where h is the discretization step). This complexity is not as good as the one
induced by tangent estimators from discrete geometry which is in O(h) for the
best ([6]). However, it is possible to reduce the complexity of our estimator by
considering that values at extremities of the smoothing kernel Hn are negligible.

The following theorem comes from the Hoeffding inequality ([3]).

Theorem 2. Let β ∈ N
∗ and n ∈ N. If k = n

2 −
√

βn ln(n)
2 then:

1
2n

k∑
j=0

(
n

j

)
≤ 1

nβ
(10)

Theorem 2 means that the sum of the k first and the k last coefficients
of the smoothing kernel are negligible with respect to the whole kernel. The
parameter β enables to define what negligible mean. Typically, we chose β = 2.
Using the result of Theorem 2, it is possible to reduce the size of the derivative
kernel Dn recommended by Theorem 1. As a consequence, the computational
complexity of our method can be improved without spoiling the quality of the
derivative estimation. For example, with β = 2, the computational complexity

is reduced to O

(√
− ln(h)

h

)
(with the hypothesis that the noise is maximal).

2.4 Higher Order Derivatives

One of the most interesting point about our method is that higher order deriva-
tives can also be estimated.

Definition 6. Let n ∈ N be the size of the kernel and k ∈ N
∗ the derivation

order. We define the kernel for higher order derivatives, denoted Dk
n, as follow:

Dk
n = δ ∗ . . . ∗ δ︸ ︷︷ ︸

k times

∗Dn (11)

As for first order derivatives, we have proved the convergence of the estimator
for higher order derivatives.

Theorem 3. With the following hypothesis:

– k ∈ N
∗

– φ : R −→ R is a Ck+2 function
– φ(k+2) is bounded
– α ∈]0, 1], K ∈ R

∗
+ and h ∈ R

∗
+

– (αr)r∈N a sequence such that αr = (2/3)rα
– Γ : Z −→ Z is such that |hΓ (a) − φ(ha)| ≤ Khα



– n =
∑k−1

l=0

⌊
h2(αl−3)/3

⌋
there exists a function σφ,α,k : R+ −→ R+ with σφ,α,k ∈ O(h(2/3)kα) such that:∣∣∣∣h

−k+1

2n
ΨDk

n
Γ (a) − φ(k)(ha)

∣∣∣∣ ≤ σφ,α,k(h) (12)

The proof of Theorem 3 is obtained by iterating the result of the Theorem 1.
As a remark, we can point out that the Theorem 3 is identical to Theorem 1 if
we consider the case k = 1.

2.5 Experimental Results

As an example, Fig. 1 shows the derivative estimation (in gray) of a noisy sine
(in black). On this first example, we have used a kernel size n = 25.
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Fig. 1. Example of derivative estimation of a noisy sine wave.

In Fig. 2, we start from a simple continuous sine wave. This original function
is then discretized. After that, we compute the derivative from the discretized
data using our estimator. Finally, the result is compared with the theoretical
continuous derivative we should get. To do so, we use the cumulative error, that
is, the sum of absolute differences between the theoretical values we should get
and the estimated ones. These measures are repeated for several discretization
steps (h) and derivative kernel widths (n). The grayed part in Fig. 2 is the place
where the cumulative error happens to be minimum. This area corresponds to
the optimal derivative kernel width for a given discretization step. We can see
that this zone is compatible with the result of Theorem 1.

3 Derivatives Estimation for Parametrized Curves

A parametrized function is a function φ : R −→ R
2 made up of two coordinates

φx : R −→ R and φy : R −→ R. In the same manner, a discrete parametrized



Fig. 2. Cumulative error.

function is a function Γ : Z −→ Z
2 made up of two discrete coordinates Γx

and Γy. In order to estimate the derivative of a discrete parametric function, we
naturally want to apply our estimator to its coordinates. After that, we want to
evaluate the quality of such an estimator. So, we build a correspondence between
the parametrization of the continuous function φ and the pixels numbering of
the discrete function Γ in a manner similar to the case of real functions (see
Equ. 8).

3.1 Pixel Length Parametrization

As we have seen for the case of real functions, we need to establish a correspon-
dence between a theoretical continuous function and its discretization in order
to evaluate the quality of the derivative estimation. So, given a continuous para-
metric function φ and its discretization Γ , we would like an expression of the
form:

‖hΓ (a) − φ(ha)‖ ≤ ε (13)

The problem is that Equation 13 is not necessarily satisfied if we consider ε
small enough to be meaningful. This is due to the non-uniform parametrization
of φ and the non-isotropic character of Z

2. Therefore, we build a reparametriza-
tion φ of the function φ such as:

∥∥hΓ (a) − φ(ha)
∥∥ ≤ ε (14)

Remark that the quality estimation of the derivative estimator will consider
the reparametrization of the initial curve instead of the initial curve itself. As a
consequence, the norm of the tangent estimation will not be meaningfull but its
orientation will.



The problem of correspondence between parametrizations is solved by intro-
ducing a new notion, the pixel length parametrization. This notion is similar
to the parametrization with respect to arc length but relies on the 1-norm (the
taxicab norm) despite of the euclidean norm.

Definition 7. Let φ : I ⊂ R −→ R
2 be a parametric function. We define the

length function, denoted L, by:

L : I −→ R+

u �−→
∫ u

min(I)

‖φ′(t)‖1 dt
(15)

The function L gives the arc length according to the 1-norm of the curve φ
between the origin of the parametrization and the parameter u.

Definition 8. Let φ : I ⊂ R −→ R
2 a continuous parametric function. Similarly

to arc length, we define the pixel length reparametrization of the function φ,
denoted φ, by:

φ : L(I) −→ R
2

x �−→ φ
(
L−1(x)

) (16)

We have proved that there is a correspondence between the continuous par-
ametrization of φ and the pixels numbering of an 8-connected discretization Γ
of φ such that Equ. 14 is true.

Since we are able to connect a parametric continuous function and its dis-
cretization, we want to evaluate the quality of our derivative estimator. Unfortu-
nately, there is still a problem. Indeed, the pixel length reparametrization is only
piecewise C3 and C1 where the curve admits a vertical or horizontal tangent.
This comes from the use of the 1-norm which involves absolute values. As a con-
sequence, the hypothesis of Theorem 1 are not satisfied and it cannot be directly
applied to prove the convergence of our derivative estimator for parametrized
curves. At the moment, we have an another theorem for the parametric case
proving the convergence of our derivative estimator which gives a convergence
rate of O(h2/3) almost everywhere on the curve and O(h1/3) in the neighborhood
of vertical and horizontal tangents. Though, from experimental results, it seems
that the convergence rate is uniform O(h2/3).

3.2 Experimental Results

Fig. 3 is an example of derivative estimation for parametrized curves. The tan-
gents for all points of the discrete curve (black squares) are represented with
black segments. Note that in this figure, the gray grid is a representation of Z

2.
From this illustration, it seems that derivative estimation is not worse for hori-
zontal and vertical tangents than elsewhere.

Fig. 4 is a more precise experimentation intended to illustrate the behavior of
our derivative estimator for vertical and oblique tangents. In this test, we start
from a parametric continuous circle (centered on 0 and with radius 1). Then we



Fig. 3. Example of tangent estimation for a parametrized curve.

discretize this base function for several discretization steps using the pixel-length
reparametrization. After that, we compute the tangent with our derivative esti-
mator for two locations: the first one is a vertical tangent and the second one is
an oblique tangent. The results are then compared with the theoretical tangents
we should get (computed analytically from the continuous original function).
The error is defined as the angle between the estimated tangent and the theoret-
ical one (in radians). From Fig. 4, we can see that our estimator is not worse for
the vertical tangent than for the oblique one. Besides, we can also notice than
the estimator gives better results for small discretization steps.

4 Conclusion

In this paper, we have defined a new approach based on discrete convolution
products to estimate derivatives of digitized functions. We showed that under
some conditions this new method has a good order of convergence even on noisy
data. Given a discretization step and a noise strength, it is possible to automati-
cally select the size of our derivative kernel to achieve the best convergence rate.
As a result, the user won’t have to set too many parameters.

An another benefit of this approach is that computations involved in the
derivative estimation can be done using integer only arithmetic. Moreover, higher
order derivatives can be estimated.

By reducing the size of the derivative kernel in such a way that the lost of
quality is negligible, our computational complexity is comparable to [6].



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

0.002

0.006

0.01

0.014

0.018

Discretization step
(h)

Error for the derivative estimation of a vertical tangent
Error for the derivative estimation of an oblique tangent

E
rr

or
(r
ad
ia
ns

)

Fig. 4. Comparison of derivative estimator in the parametric case for vertical and
oblique tangents.

Even if there is some technical problems for proving the exact convergence
rate, experimental results showed that our derivative estimator still works for
parametrized curves. Moreover, we have set up the new notion of pixel length
parametrization which solves the problem of correspondence between the pixels
numbering of a discrete curve and the parametrization of a continuous function.
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